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Abstract

In this manuscript, we presented the technique of having solutions to sequential \-Caputo fractional differential equations
(\-CFDE) with fractional boundary conditions ({»-FBCs). Well-known fixed point techniques are used to analyze the existence
of the problem. In particular, the principle of shrinkage mapping is used to investigate the results of uniqueness. Krasnosiliki’s
theory reflects us in this regard obtaining the results of existence. A numerical example is employed to exemplify the desired
results by considering specific cases. This demonstrates and substantiates the generalization of our work to various recent and
intriguing updates.
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1. Introduction

The idea of fractional calculus (FC) arose as an interesting research topic many years ago. The ap-
pearance of a half derivative debut by the brilliant Leibniz and L'Hospital’s (see, [1]). The study of
fractional-order calculus has been a subject of research for many years. It began as a result of Leibniz
and L'Hospital’s illustrious discourse, in which the issue of a half derivative was first raised (see, e.g.,
[1]). Fractional differential equations (FDEs) at present, have gained great popularity so as to have good
results in applications. We refer to some of them are in polymer materials, fractional physics, theory of
automatic control of abnormal diffusion, and in stochastic processes (see, [2]).

As we know that fixed-point theory (FPT) over the past 150 years, it has occupied positive progress
in mathematical analysis. It has various applications in most sciences and in various fields, including the
theory of improvement mathematical physics, topology, and approximation theory Poincare has launched
the investigation of FPT in the nineteenth century. In 1922 the existence and uniqueness of solutions of
differential and integral equations was discovered and proved by Banach for classical FPT. The existence
and uniqueness of differential and integral equations solutions were established by Banach 1922 proof of
a classical FPT. In 1930, Schauder came and was adopted into the Banach space of infinite dimensions,
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the first fixed point named after Schauder FPT and has many, many real-life applications in our lives.
Including in game theory, economics and engineering [3, 4].

FDEs is a new approach in mathematics that is a valuable tool in modeling many phenomena in
various fields such as cancer therapy, medicine, signal processing, etc.; we refer to [5, 6,7, 8, 9, 10, 11, 12].

Recent research on \-Caputo fractional differential equations (\}p-CFDEs) and Caputo Hadamard frac-
tional differential equations (CHFDEs), As we know that these two definitions are generalization of Ca-
puto and Riemann Liouville fractional integral (RLFI) and Riemann Liouville FDs. In particular, the
existence results of the solutions are investigated in [13, 14, 15, 16, 17, 18, 19, 20, 21, 22], where the strip
conditions and FPT are employed.

Knowing that many authors and researchers have studied both the theory of existence and unique-
ness results and stability asymptotic of higher order using Caputo and Riemann Liouville FDs,Caputo
Hadamard fractional equations see [23, 24].

M. Matar et al. [25] investigated the existence and uniqueness of solutions for Hadamard fractional
sequential differential equations

{ (DE+yDE ) s (t) =f(t, (1), 1<a<2,
»(a) =3 (a) =0,
and
{ (D& +¥Dg T+ XEDE2) s (1) = g (4, 2 (1),
»(a) =5 (a) =" (a) =0,

where2 <ax<3,tela,T],1<a<T,f,g:] xR — R are given continuous functions (CFs), and y and A
are real numbers. In [26], the authors took into account the second-order infinite system of DEs

{ P g (), te ] =1, q)

Wy (1) = u)(q) =0,

tu A u(t), te ] =11, 4]
Wy (1) = u](OI) =0,
where u(t) = {u;(t) ;?11, in Banach sequence space 1P, p > 1
Inspired by the above FPT and cited works, we consider {-CFDEs using 1-Caputo FD boundary
conditions (P-FBCs) of the form

P (DY 1) (6) = g(0, %(0)) 0 €] = [a,b], 1 < &1, <2 (1.1)
s(a) =0, kD¥Wo(b) 4+ (1 — K)DY2W (b)) =93, 93 € R (1.2)
where D%, D*2i¥ig the -CFDEs of orders o, o, D%, D% is the -FBCs of orders 91, 9, respec-
tively. 0 < 91,92 < oy — 2,0 < k < 1is some constantand a CF g:J x R — R.
We utilise the following hypotheses to show the results of {-CFDE utilise {-FBCs.
(Q1g:J=1labl xR —RisCFE
(Q») There exists nondecreasing functions ¢4(0) € C([a, b], R*):

lg(o, )| < dpg(0), for any sz € R
(Q3) There exists the function Y¢(0) € C([a, b], R"):

lg(0, ) — g(0, 21)| < Yg(0)[2c— 321], for any s, s € R.

The famous concepts of the problem (1.1)-(1.2) and lemma are stated in [5, 6, 9, 25].

We arrange the section as follows. The following section dealt with some definitions and theories that
are adopted in the rest of our work, section 3 mentions the basic results obtained, section 4 provides a
numerical example of theoretical applications, and in the last section we present a conclusion.
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2. Essential Preliminaries

Definition 2.1 ([1]). For at least n-times differentiable function x : [a,c0) — R, the Caputo’s FD with order v is
defined by

1 o
(CQB’)X(G)ZML (0—s)" "~ xM(s)ds, forn—1<v<m,

where n = [v] + 1.
Definition 2.2 ([1]). The RLFI of order v for a function X : [a, co) — R is defined as follows

RLA~v _ 1 ¢ X(S)
("-3V)x (0) = o) L (G—s)l"’ ds, forv >0,

provided the integral exists.
Definition 2.3 ([1]). The HFI of order v is defined by
L(° vl x( )
Hyv _ e
( ] )x((r)—r(v) L (logs) S—ds, v >0.
provided the integral exists.

Definition 2.4 ([1]). The CHFD is defined as
L7 (1oe OV o X(s)
Hav _ e n =
:DX(G)_F(n—v)L <logs> 0 . —ds,n—1<v<n n=[l+1,

where X : [a,00) — R is an n-times differentiable function and 3™ = (o &)™
Let ¢ : [11,T2)] = R, be increasing via }’ (o) # 0,Vo. We start this part by defining -fractional

integrals and derivatives. In all notations of this section, we set

SR

v U/ (o) do
Definition 2.5 ([27, 28]). The vth {-integral for an integrable function x : [11, T2] — R with respect to V is
illustrated as follows :

1 ¢ v—1 ./
720X (0) = wj (W (0) — (£))° 1 (£) x (&) dE, 2.1)

where

+00
I (v) :J e 0¥ ldo, v > 0.
0

Definition 2.6 ([27, 28]). Let n € IN and,v € C™ [1y, 2] be such that 1 has the same properties mentioned
above. The vth 1-fractional derivative of x is defined by

v _ am)qn—vp
DTT x (0) = aq) j’r]* x (0)

- o J (0 (0) b (£)™ 1 (&) (£) dé,
in which n = [v] 4+ 1 .The vth }-Caputo derivative of x is defined by
“DVYX (0) =T 0gx (0),
in whichn = [v] +1 forv ¢ N, n =v for v € IN. vTh Y-Caputo derivative of x is defined by
oyx (o) veN,

Cqnup
® T X(O-) = { n—v—1

(2.2)
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This derivative gives the Caputo-Hadamard derivative and the Caputo derivative when ¢ (0) = Ino
and { (o) = o, respectively. The vth {-Caputo derivative of the function x is specified as ([27], Theorem
3)

n—1 ak
“DY¥x (0) = DY (x(o) -2 ’]i,(m (W (0) = (m)k> :
k=0 '

We can use the configuration rules for the above \-operators are recalled in this lemma.

Lemma 2.7 ([27, 28]). Let n—1 <v <nand x € C" [t1, 2] . Then the following holds:

n— lak
5 (€D (0)) = x ()~ - X iy (o) —p ¥,

k=0
for all o € [ty,7T2]. Moreover, if m € N and x € C™"™ [y, T,], hence we get
k+n—v—m

m [Cpub _C v+m1b (U Tl)] k+m
a‘l’(DTfX(GD(G)_ QTT +Z F(k+n v—m+1) oy "x ().

Observe that if albx (1) =0,Vk =n,n+1,..,n+m—1, we conclure this relation:

o (DY (0)) (0) =€ DL™x (0, 0 € [y, 7]

T

Lemma 2.8 ([27, 28]). Let q,q" > 0 and x €Clty,T2]. Then, Yo € [t1,To] and by assuming | -, (o) =¥ (o) —
U (11), we have

jQ;ll)jq/;ll) (o ):jqi‘q/;ll)
X (0);

leﬂ)( X (0) 47! = (S (Fy (0) 797

DI (Fy ()T = gy (F ey (0))F 97

I'a’—q)
C@jl;‘b (Fe (0)*=0,(k=0,..,n—1),neN, qe (n—1,n].

x(o);
CDq ll)qub (o) =

A

Lemma 2.9 ([27, 28]). Letn—1 < oy < n, 00 >0,a>0, x € L(a,7), Dz‘fq’x € L(a,T). Then the differential
1

equation
Dgél;ll’x -0

has the unique solution
X(0) =wo+wi (¥ () =V () +wa2 (Y () = (0)* + - +wn_y (W (0) =W (a))™ 7,
and
g paty (o) = x (o) +wo +wy (U (0) = (a) +wa (B (0) — P (a))?
o wng (W (o) =W (@)™,

withweeR, {=0,1,...,n—1.
Furthermore,
DIPIIPy (o) =x(0),

and
Jg‘l;‘l’ﬂg‘z"‘px(cr) — ggcz;lbqu;ﬂ)x(c) — ggcﬁrocz;lbx(g)_
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Lemma 2.10. The {-FBCs
DXV (DX2W 5)(0) = @(0), o€ J:=a,b], 1 < ay, 00 < 2 (2.3)
kDYW 5 (6) + (1 — k) DY 5(b) = 93, »(a) =0 (2.4)
is equivalent to

»(0) = jfxz;ll)(jocl;lb(p)(o.) + (ll)(cr)fﬂ)(a)))“Z (93 — Kgocz;tb(joqfel;tb(p)(b)

)\1F((Xz 1
(1= KIS (30 ) 6)), 0 € = [n, b, 29
where (W (b) ()% ) (P (b) (a))?
kW (b) =Y (a)) ™ 1—«)((b)—P(a)) ™2
A= r2— ) + M2—9,) #0. (2.6)
Proof. Taking the vth -integral from Definition 2.5 in Equation (2.3), we obtain
%(0_) — jocz;ll) (J“l;w(p)(O') +c1+co (II) (0) _ll) (a))(xz (27)

Mox+1)

The first boundary condition of (2.4)= ¢; = 0 and 2nd boundary condition of (2.4), Equation (2.7), we
obtain

1—94
193 — KJOCQ}I])(JOC]}Ib(p)(b) + CQK(II) (b) _Il) (a))

M2 —91)
. 1-9
+(1_K)joczﬂb(joc1,1b(p)(b)+c2(1_K) (lb (b) 11)(0)) 2 (28)
2 —97)
ca = (9 — kI (IO ) () — (1 I (IO ) (b)) 2.9)
Substituting constant c; in (2.7), we get Equation (2.5). Finished the proof. O

Theorem 2.11. [32] Krasnoselskii’s FPT] Let a Banach space X, select a closed, bounded, and convex set ) # B C X.
Let Q1 and Q2 be two mappings:

(1) Qise+ Qay € B whenever s,y € ‘B,
(ii) Qq is compact and continuous;
(i) Q2 is a contraction mapping. Moreover, 3z € B : z = Q1z+ Qzz.

3. Main Results

We start by defining ¢ = C([a,b],RT) : [a,6] — R as the Banach space of all CFs with the norm
||| = sup{l>¢ (o) |, 0 € [a, b]}. Now, define the mapping @ : C([a, b], R) — C([a, b], R) by

D (o) = Joard (gal;tb(g%)) (o) + %(% _ ke (gcxl—ﬁl;w(g%)) (b)

(1= )3 (305 (g, ))(6)), & € ] = [o, b, Gl

abbreviate g(o, »(0)) by g,.(0)

I (0,0)(0) = e || () = (5) 2 )~ (o)

x g(0, %(0))¥’ (o) doy’ (s) ds.

We choose here FPT guarantees us many recent results , see, e.g., [29, 30, 31].
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Theorem 3.1 (Contraction Mapping Principle). Suggest that (Q1), (Q3) are holds. If MYy < 1, where
YZ =sup{Yq(o): 0 < [a,b]}

(W (o) = ()]
Al (2 + 1)

X (193] = [k[7% P (32720 (1)) (b) — (|1 — k[)T*™ (17029 (1)) (b)),

Ag = 3% (3907 (1)) (b) +

so, the problem (1.1) and (1.2) has a unique solution on J.

Proof. Let B, = {5c € C: ||| < r} be a convex and closed bounded subset of C, where the fixed constant

T satisfies
pA2

P> 2 3.2
1-TiA (32

where p = sup{g(t,0) : t € [a,b]}. We show that @B, C B, and by using the triangle inequality |g,.| <
195 — gol + 1gol, we have

[ (0) = (o))
Al (2 +1)
— (1= kg (320792 (|, 1)) (b)),

|©5(0)] < I (3% (|g,.[) (0) + (193] = [x]7% (39725% (|g, |)) (b)

(P (o) = ()]
ISTNCOR Y

X ([93] —[k[7°27P (3917917 (|g, . — gl + |gol)) (b)
— (11— k)7 (309792% (g, — gol +Igol)) (b)),

(W (o) = (a)) ™|
Al (o2 4-1)

X (193] — [k|7%27P (37917 (Y 4 p)) (b)
— ([T — k)7 (329220 (Y7 4 p)) (b)),
= Ygr)\z +PpA2
<.

|©3<(0)] < 3P (3% (g, — gol + Igol)) (o) +

<90 (I (T 4 ) (0) +

Moreover, @B, C B,. Let s, 0 € B,, we get

@321 (0) — D302(0)] < I (3% (Ig,; — gony])) (0)

|(1b (G) _II) (Cl))“2| . o (qoeg—O0 _
A TTon + 1) (193] — k|79 (3 (1956 — g51)) (b)
— (1 — kg (gea—d2 (g, —g,.1))(b)),
|

(P (o) = (a))*|
AT (o2 +1)

x (19l — KI5 [1361 — s65][ 7927 (%1917 (1)) )
— (11— k)Yl — 302ll7°7% (317027 (1)) (b)),

= Yghallsa — 52,

< Vgl — 50ll7%% (3279 (1)) (0) +

= @3 (0) — Q32(0)] < YVgAzllsen — 322l Since YA, < 1, hence the mapping @ is a contraction. Now, @
has unique FP, demonstrating that problem (1.1)-(1.2) has a unique solution on J = [a, b]. O
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Theorem 3.2. Suppose (Q1), (Q2) are satisfied. If
T (3% (1)) ()] < 1, (3.3)
then the problem (1.1) and (1.2) has at least one solution on [a, b].

Proof. LetBs = { € C(la, b],R) : ||| < o} where a constant o satisfies 0 > ¢§A2 and by = sup{dg(0) : 0 € [a, b]}
Divide the operator @ into the two operators ®; and @, on B, with

(b (0) = (a))*
Ml (o +1)

Dy3(0) = (95 — kI (3979170 (g, )) (b) — (1 — k)32 (397270 (g,,)) (b)),

and
Do) = I%% (37 (g,,)) (o).

The ball B, is a bounded, closed and convex subset of the Banach space C([a, b],R). Here, we prove that

D1r 4+ Ory € B, Let 5,y € By, then, we have

(P (o) = (a))*?]
AT (02 +1)

= (1= )gea (3207227 (|g,, (b)) + 9% (3997 (gy)) (1)

W (0) = (a))®]

AT (o2 +1)

— (1= kDI (30 (1)) (B)) + I (37 (1) (0)

= dyA

<o,

[@15¢(0) + Day(0)] < (193] — [[go27P (351 =20 (g, |)) (b)

(193] — [T ¥ (39720 (1)) (b)

which implies that ®qsc + @y € B,. Nextly, to show @, is a contraction mapping, for s,y € B, we
obtain

|@55¢ — Dayl| < TP (3% (|g,, — gy))(b)

<
<TI0 (1)) () 1o« — yl,

by (Q3), which is a contraction by (3.3).
Next, we demonstrate ®; is continuous and compact. Since g is continuous on [a,b] x R, we can
devise @4 is continuous. For s € B,
152l < b3 A,
where
(W (o) = (a))*
A1l (o2 +1)

This indicates that ©1B is uniformly bounded. Now, we demonstrate that ®1°8 is equicontinuous. For
01,07 € [a,b] : 01 < 07 and for » € B, we have

|[@12¢(01) — D13¢(02)]
(P (02) = (a))*2 — (U (01) — P (a))*?|

AT (a2 +1)

x ([93] — k|79 (301720 (1g 1)) (b) — (|1 — k[)T*W (32— 92% (|g,.[)) (b))

< GgMsl( (02) = (a))*2 — (P (01) — P (a)) 2.
It is obvious that the above expression is independent of » and also tends to zero as 01 — 03. Therefore
DB is equicontinuous. Hence @18 is relatively compact. Now, by applying the ArzelaAscoli theorem

(see, e.g., [32]), the operator @ is compact on B,. Thus, ®; and D, satisfy the assumptions of Theorem
2.11. By Theorem 2.11, we confirm that the problem (1.1) and (1.2) has at least one solution on [a,b]. O

A = (193] — [I°27% (3542070 (1)) (b) — (11 — )3 (9%1=92% (1)) (1))

<
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4. Example

We propose a numerical example to verify our results.
Consider the \-CFDEs with \p-FBCs, let \ (o) = log

AD%;U) (Docz,lb%) (0)=gl(o,x%(0)), o€ <;,Z> , (4.1)
1 1.7 7 6 i, Z _§
* <3> =0, 5D <3) gD <3) ) 2

whereoq = 1,00 =%,a=16=29=1,9,= 1,8 = Land x = },A; =1.00201235 " J3 (HJ% (1)) (2) =

7) = 0.9021586
4

(log5)3

0 nr(D)

=0.482569, and let g : (1,5) x R — R with

g(o, x(0)) = ;m (2 +1)

gives, |g(o, #(0)) —g(o,y(o))| < T |22 —y| and Yo = % Thus, YA2 = 0.862487 < 1.
Then, by Theorem 3.1, problem (4.1) and (4.2) with g(o, »(0)) has a unique solution on (%, %)

5. Conclusions

In this manuscript, we investigated the existence and uniqueness results of \-CFDEs for \{-FBCs
problem (1.1)-(1.2). The existence is obtained by utilizing Krasnoselkii’s Theorem, while uniqueness is
achieved through the contraction mapping principle. Additionally, we provide a numerical example to
illustrate the results of the previously studied theory
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