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Abstract

In this paper, a novel concept for a double transform in two dimensions known as the double SEJI integral transform
has been proposed. Its key characteristics, including a few of its properties and theorems, have been established. A few well-
known functions were also available in the Double SEJI integral transform. Later, we learn about brand-new research on
partial fractional Caputo derivatives and partial differential derivatives. Finally, we apply this new transform to various
first- and second-order partial differential equations.
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1. Introduction

Because of this, many scientific phenomena can be represented mathematically by equations built using
partial differential equations [1, 2, 3, 4, 5, 6, 7, 8]. One of the most significant strategies for solving partial
differential equations that has recently been discovered is the use of integral transform methods. The precise
solution to the partial differential equations can then be obtained by converting differential equations into
algebraic equations using integral transforms. These techniques were the result of many years of hard work by
scientists and researchers, and they are today employed to resolve challenging problems in contemporary
mathematics. Laplace transform, Sumudu transform, Elzaki transform, SEE complex transform, Fourier
transform methods, etc. are a few examples [9, 10, 11, 12, 13, 14, 15,16, 17,18, 19,20].

Recently, more and more partial differential equations including unknown functions of two variables have
been solved using numerous double integral transformations, and the solutions exceed those obtained using
numerical methods. The double Sumudu transform, double Shehu transform, double Elzaki transform, new
universal double integral transform, and others are additional double Laplace transform extensions [21, 22, 23,
24, 25, 26]. In order to solve fractional partial differential equations, several mathematicians have used double
transformations [27, 28, 29].
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In 2022, the authors introduce the SE]I integral transform, a new integral transform similar to the Laplace
transform and other time-domain integral transforms ¢t > 0.

Functions of exponential order are defined using the SEJI integral transform. We look at the following
functions in the set C defined by C = {f(t):3M, L, and L, are greater than zero such that |f(¢)| < Me it if t €
(—1)) x [0,0),j = 1,2}, where i is a complex number.

Vf(t) € C, AM € R and L,, L, may be finite or infinite. Then, SE]I integral transform denoted by T {f(t)} is
defined by the integral equation:

IO} =E© =p6) [ e Oy@a @
t=0
Where t > 0, p(s) and q(s) are positive real functions, i complex number. [30]

2. The Double SE]JI Integral Transform

Definition 2.1: Let f(x,y)be an integrable function defined for the variables x and yin the first quadrant,
p1(8), 2 (1), q,(s) and q, () are positive real functions; then the Double SE]JI integral transform ng {f (v, v)} is written

by
L) =BG =n©p@) [ [ e@@meonigy arar. @)
0 0

Provided that the integral exists for some q4(s), q,(1).

The  following  formula  is  the  inverse of the  Double  SE]I integral ~ transform:
y+ico w+ioo
T,¢ " {cm(s r)} =fy) = L f | inxgs | —— f ' 2V E, (s, 1) dr
g gz ’ 2mi ) pi(s) 2 ) pa(r) g ’
y—ico w—ioo

Where y and w are real constants.

3. Existence Condition

If f(x,y) is an exponential order, then e and f as y = o,y — oo, and if there exist a positive constant N such
that Vy € X,y €Y, then

|f(XJ V)l = Nee)(+f‘y’
And we write f(,y) = 0e®**/¥ as y - o0,y — 0. Or equivalently,
im e—ta1()x+a2(r)y] = Nl —ligi()—elx-ligz(-fly =
Jime~tlax If Qe v)l = Nlim e~ 0,
Y- y—-o0

q.(s) > e, q,(r) > f.
The function f(x, y) is called an exponential order as y = o,y — . and clearly, it does not grow faster than
Ne®X*f¥ a5 y — 00,y — o0,

4. Properties of Double SE]JI integral transform
4.1 Linearity Property

Let ng {Ff.i= Fzgl(s, r) and TZS{W(X, n}= Fzzl(s, r) then for every ¢ ando are arbitrary constants, then:

Toglof (o v) £ oW, v)} = eFyy (5,7) 2 0y (5,7).
Proof:

Lo fef ) £ 0wl )} = piIpa(r) | [ e lof (e y) £ owe )] dy ay,
00
= P()p2(r) (f f e~ @ x+2M o f (3, 1) d)(d)’if f e O+ agw(y,y) dy dy |,
00 00
=p;(8)p, (Mo ffe_i(Q1(s)X+QZ(r)y)f(X’y) dy d)/io'f f e {aOx+a2MVyw(y, ) dy dy |,
00 00

= op, (s)p, (1) ( f f e (GO RNy, y) dy d}/) + op, (s)p, (r) ( f f e (GO RN y(y,y) dy dy )
00 00
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Tolef () £ ow(x )} = Ry (1) 0y (7). m

4.2 Double Convolution Theorem

In the event that f(x,y) and h(x,y) are integrable functions of two variables, then the double convolution of
f (. v) and h(x,y)is given by:

Y X
f(X.)’)**h(X,V)=fff()(—’£,)/—u)h('[,u)drdy.

0
Where the double convolution with respect to y and y is indicated by the symbol *x.
Theorem 4.1. Let FZ;l(s' ) and FZEZ(S' r) be double SEJI integral transform of the functions f(x,y)and

h(x,v) respectively, we suppose that p,(s)p,(r) # 0,Vs,r > 0, then

Tzz{f(X' Y) *xh(x,v)} = Fzgl(s' r)Fzgz(S: r)

1
p1(s)p2 (1)
Proof: we have

oo Y X
L) = G} = @) [ [ e @@raom| [ [ rG— oy - wnt dedu | axay,
0 0 00

Substituting ¢ = y — 7,0 = ¥ — u and letting y, y to oo, we get

14
ng{f(X'V) *x h(X’Y)}=p1(S)p2(r)j j <j jf(g’ o)h(t, p) dtdu e~ i(a1()(e+1)+az (M) (o +w) dodo,
0
_pl(s)fff(g,o') pZ(r)j je—i(q1(5)r+qz(r)u)h(1-’#) dr dy | e i01(e+a2) qp dg,
-7

= [ [reo)|mepm
00
Since f(x,y) # 0 and h(y,y) # 0, we have
LAFOOD) # h0u) = o (G} | j (e, ) dr d j j fe,0)e@:9er0:09) dg o,
0
T, (F Q)+ h(r, )} =
T, (F Q)+ h(r, )} =

P1(S)p2 (1) oo g U QoI T thG V3,

szgl(s'r)Fzzz(S, ). -

5. The Double SEJI Integral Transform for some Fundamental Functions:

In this section, we shall derive some elementary functions by using Double SE]I integral transform.
Formula 5.1.
fOr)=1Lxy>0,

ng{l} = p1(S)p (1)

0\8

f e~ @XM dy dy,
0

=P1(5)P2(7")f e~ia2(My fe—iql(s)x dy |ay,

0

= p,(s)p; (T')f lqz(T)V

e~laz(y

o-itn x| ® _ p1()p(r)
q()X‘())d —iqi(s) (i‘h(r)

o)
)

l‘h(s)

—iqa(r —igy x| ® _p1(5)Pz(T) —igy oy | ®
_pl(s)pz(r)f q2( )y lql(S)e q ()x‘ )d =) (iqz(r)e q2(r)y 0)'
_Th ($)p2 (1)
T = a0

Formula 5.2.
f(X’ )/) = e“)("'ﬁ}’, a!ﬁ E R}
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o0 ©o

T, {e™ 1} = p, (s)p. (1) f e‘i(q1(s)x+‘h(r>y>eax+ﬁy dy dy,
00

—p1(5)P2(T)f —(@ig2(m)-By fe_(iQ1(s)_a)X dy |dy,
0

O p P g
O)dy PSP (-tiaatr)-p | 0),

-1 P
= —(ig2 (")~ B)y( (iq1()-@)x
= PPz (r)f ¢ ¢* iq,(s) —a

ig,(s) —a
_ p1(s)p2(r)
 (iqy(s) — a)(iq,(r) — BY’

p1(S)p2 (1) , ,
@GO +lamp @ OB+ i)

ng{eaerBy} =

Formula 5.3.
foy) = ez(ax+ﬁy) a,f ER,

T,5 {e @V} = p, (s)p, (r)

of of
= pl(s)pz(r)f e~ t@2M-By (f e~ a1)-Dx gy | dy,
0 0

ng{ei(aﬁﬁy)} =

e~ Ha1Ox+a2(IV) o i ax+BY) gy gy,

—p1()p,(r)
(q:(s) — ) (g2 (r) — B

Formula 5.4.
f6Y) = sin(ay + By),

T,¢ {sin(ay + BY)} = p, (5)p, (™) f f e U@ X+ W) sin(ay + py) dy dy,
00

ellax+py) _ e—t(ax+ﬁy)]

= pl(s)pz(r)f f e—i(ql(S)x+qz(r)y)[ dydy,
00

=%p1(s)p2(r)< f =@ a0 i@x+8Y) iy dy — f f —i(q, O+, g-iCax+By) d)(dy>
l
0

=—p1(s)p2(r)<ffe—i(‘h(S>—a>Xe—i(‘h(T)—BWd)(dy ff —i(ql(s)+a)xe—i(q2<r)+ﬁ)ydxdy>,
00

1
T 2i

0
—p1()p2 (1) " P1 (5)172 ™)
(@1() —a)(q2(M = ) (q1(s) + a)(q (1) + B)
—ip, ()p,(M)[Ba, (s) + aq, ()]

(la,]" - @) (g, ] - 87)

T, {sin(ay + By)} =

Formula 5.5.

fQy) = cos(ax + By), o
Tz;{COS(Of)( +ByY)} =p,)p, (r)f f e~ @1 x+a2) cos(ay + By) dy dy,
00

iax+py) 4 o—ilax+By)

=P1(5)P2(T)f f e~ a1+, () [e 5 ]d)( dy,
0

OSS

2 pl (S)pz (r) ( f e i(‘h(S))(+‘Iz(r)}')ei(ax+ﬁy) d){ dy + f f e_i(ql(S)X""Zz(r)y)g_i(a)("'ﬁy) dX dy >'
0

2 p1 ($)p2(r)

~

0 oo 00 0o
ffe—i(ql(s)—a)xe—i(qz(r)—ﬁ)y dXdV+f f e~ IO+ o=@ gy dy )
00

00
_ l [ —p1(8)p. (1) _ IAQIAQ)
2](q1(s) —a)(q2(M) = B)  (q1(8) + @) (g2 (1) + B)
—p,()p,M)a,()a,) + ap]

(le,®]" - ) ([a,0]" - 87)

T {cos(ay + By)} =
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Formula 5.6.
fQuy) = sinh(ay + By),

Ty {sinh(ax + BY)} = p, ()p, () f f ~iax+a2™Y) sinh(ay + By) dx dy,
0

0
(ax+By) — e—(a)(+ﬁy)
[ ] dy dy,

= p©Op0) [ [ et
00

= %pl (8)p,(r) (f f e~ a1 (x+ax () g(ax+By) dydy — f f =i(q1Ox+ay(r)y) g—(ax+py) dy dy )

0

0
=%p1(s)p2(r) f f =05t =0z ()=B)Y gy dy — f f e—(iql(s)m)xe—(iq2<r)+ﬁ)ydXd],),
0 0 00

—p1()p2(r) _ p1()p2(r)
2[(ig: () — ) (g, () = ) (a1 (s) + ) (iq, () + B)
—ip, ()p,()[Ba,(s) + aq, ()]

(lo,]" + @) (la,]" +57)

7% {sinh(ay + By)} =
Formula 5.7.
fQy) = cosh(ax + By),
T,¢ {cosh(ay + BY)} = p,($)p, () | | e~ 0OX+4) cosh(ay + By) dy dy,

@+BY) 4 o=(ax+py)
2

g —3
S —— go— .

= p1(s)p2(r) e~ (01 +a,y) [e

] dydy,

0
=%p1(s)p2(r) (ffe—i(%(s)x+qz(r)y)e(ax+ﬁy) d)(dy+ffe—i(lh(S)x+qz(r)y)e—(ax+ﬁy) d)(d)/),
00 00
=%p1(5)p2(r) ffe—(i‘h(S)—a)Xe—(ifIz(T)—ﬁ)yd)(dy_|_ffe—(iCI1(5‘)+a))(e—(iQZ(T)"'B)Vd)(dy>’
00

00
_ 1 —p1()p2 () n p1(S)p. (1)
2|(ig1(s) =) (iq2 (") — B) ~ (iq1(s) + a)(iq2 (1) + )
—p,()p,M]a,(s)q,) + ap]

(la,]" + ) ([a,] +87)

T {cosh(ay + By)} =

Formula 5.8.

Fen =Cotn>0
LS = pa()pa) [ [ e @O0 Gy axay
00

[ee)

= p1(s)p2(1) f f et x gy |emia2ryndy

n+11" 1 ]
= D1(P2(r) f [( l)q (S)(fi )] a:ryndy

crr e D2V + D]2p, ()po (1)
T2 t0n)™ = RO ROIEE

Formula 5.9.
fer)=x™", mn>0
0 00

T | .
0 0

= p©@pa) [ | [ e gy |eenmay,
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I,¢ (ymyn) = (=)™ (=)"IT(m + DI (n + Dp,(s)p2 (1) .
2LV [T [ ()] '

Formula 5.10.

fCv) =hG)gW). o
Lo G} = p ) | [ e @O G axay,
0 0

- [m(s) | e-iqﬂs)%hoadx] [pzm | e-l‘%“)yg(y)dy],
° LEFN) = TGS (9()).

6. The Double SEJI Integral Transform of Partial Differential Derivatives

We now provide some findings about the partial derivatives of the Double SE]I integral transform; we begin

with the partial derivatives with regard to y.
Theorem 6.1. Let FZC (s,7) be the double SEJI integral transform of the function f (x,v), then

i 1o (L2 = i, (R () -, TS0}
i 7y {0 = [ig, 0] R (5) — i, Op, TP, = p, T {L 0.1

Proof: i.

ox

Integ;}:?te)above by parts, we get: . - o
ng{ XY } Pl(S)pz(r)f ( —th(s))(f _,}/ X _ fo (_iql(s)e—l‘h s)X J‘ id)() d)() —lqz(r)ydy’

of (x, ([ . ofCr .
ng{ s Y)} =p,()p, () j ( j e‘lqi(s)x%tb()e"qz(r’yd%
0 0

= pl(S)pz(r)f < O, + uh(S)f e X f(x,y) d)()é"qz(”yd)’

= P (SP2(r) f —F(0,Y)e OV dy + i, (5)py (5)p, () f f (@GO £y, ) dy dy,
00

0
a’ ;))
L‘{ (X

} =iq,(S)F, (s,r) —p, ()T{f(0.y)}. m

ii. ng {6 g)(()gy)} Py (S)Pz(r)f (f e—ia1()x 9L QY) 9? f()(}’) d)() _qu(r)ydy'
Integrate above by parts, we get:

(?f( ) —ia. (s o af(x,¥) © . —ig,(s) 0062f( ) S
ng{ xv} P, ()p, (™ f; ( O [P d = g (—qu(s)e “Ox [ szvdx) dx) =i, gy,
Letu = 7110 = dy = —iq, (S)e—ith(s)x dx,

d *f(x.v) y) 63f(;( y)

V= 6 dy=v= a dy
X2 x

Then:

Z g 0062 ’
T, g{ ];;X Y)} =p2(r) f e~ gy [p (s)< ~iaa ¥ f (M> dy +iqy () f ~iaa)x ( f g)(fz 2 dx) dx)],
0 0

a0 TED )

i af (o,
=p1(5)pz(r)f e—“?z(r)y< £(0,v)

0, cr Af(x,
= P ()Pa() f i)y f ( ”dyﬂql(s)pl(s)pz(r) f f e @O TN (%}(”)dm,
0 0

2f (x, a af(x,
Tz;{ f()(Z Y)} — pi(s )TC{ f(X}/)}"'iCh(S)Tz;{ fx V)}_

dy ax
P c (9fxy)
By substituting T, | {—ax

*f(x, 0
T {%} = [0 OF R ) — OGO - T {2 0.0

} we get:
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In general,

an f n N noKe o
ng{ I V)} = (10:9) " FE (5.1) = a5 Lzzo(iql(s)) g {ax—{m'ﬂ}]-

We may verify the given formula. Inductively from mathematics,
forn = 1, we proved it in the theorem

True forn = 1.
Assume that true for n = m that means:

e {0 & }’)} ( (g)) Fpg(s,m) — pl(S)[

a m

m

- “f
lql(S) T { = 0,7)
k=1
We want to prove thatn =m + 1

Qe (9 (3" Cuy) , (") L(0"f
T ) o 522) ot
—(xq1<s>)((xq1<s>> P (s, - p1<s>[2(zq1<s>)’"" {5 w}]) w2 o),
= (i0.9))" Rg (s - m(s)Z(zqi(s)) {a){{( n}-nem 5L on)

= (i)™ Fz;(s.r)—pl(S)[Z(uh(S))mk Arontr{iio y)}]

= (10" 5 () - m(s)[Z(qu())’” At y)}]

T ey
= ng W .

So the theorem is true forn € N. =
Theorem 6.2. Let FZC (s,7) be the double SEJI integral transform of the function f (x,v), then

T, {2222} = i, (I, (s,7) = p, (DTS G, 0)).

dy

i 7, {29 = [ig, (O RS (5,7) = i, (0p, (DTS L G 00 pz(rw{"’fu 0}
il T8 {222} = (ig,(0) " RS () = p, ()| 28 (10,)) o T;{WQ(,O)}].

ay"

This theorem has the same approach of proof but with respect to y.
Theorem 6.3. The mixed partial derivative’s double SE]I integral transform can be calculated as follows:
2
Ty {22 = 24, ()0, (F,5 (5,7) = i )Py (TE0,1)} = i1 (Ipo(ITEC 00} = pa ()P (IF(0,0).
Proof: we have

62 : ) | 02 |
T2, {M} =p,()p, () j j e~ @1 x+a2(Y) °fuy) iy dy,
0 0

e dxoy
*f(x.y) )
TZZ{ gfa(yy } p,(s )f —iq,(s)x ( (T)f —iq,(y L Y) f()( Y )dy,

Integrate above by parts with respect toy, we get:

2 o ©o
e {a f (”)} (I, ) f o LED 11,099, 90,0 [ [ LEL erttwionsaan gy gy,
g aX
0 0

T ) ’ T Cc 6) ;}

= —p,("|ia, (s)T;{f(x. 0)} = Py ()F(0,0)] + iy (") [ias ()Tl LF G I ()T F (0,1},

% f (x,
Tog {%} = 21 ()4, (1) F, (5,7) — iq (M, (TF{f (0,1)} = iqy ()p, (T {f (x, 00} — 1 (), (1) (0,0). m
Corollary 6.1. Let Fz; (s, 1) be the double SE]I integral transform of the function f(x,y), then
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X v

rd [ [ rte.odeds
00

Where q,(s),q,(r) # 0, Vs,r € R*.
Proof:
The double SEJI integral transform of the function h()( y) defined by let Tz;{h()(; )}

-1
EPRGPRG RIS

hom—fff(e o) do do.

Clearly, we have h,, (x,y) = f(x,v) and h(0,0) = 0. Therefore
Too{hy G} = Tot{f Qo )} = Fo (s, 7).
By the theorem (6.3), we obtain
Fy(s,) = =q,(s)a, (T, {h(x, ¥)} — iq,(")p, ()T {R(0, )} — iq, (s)p, (TG {A(x, 0)} — p, ()p, (1) (0,0).
Thus,
p2(r)

Pi(s)
(h(0,)} — 2()

SN - T

¢ -1
T, thCov)} = m 24 Ty {h(x, 0)}.

We have T¢{h(x,0)} = Tg{h(0,)} = 0. Then
-1
T,° {h(x, =——=F°(s,1). [ ]
29{ (X V)} ql(S)qz(T) Zg( )
Theorem 6.4. Let ng{f r)i= Fzg(s,r) , then the double SEJI integral transform for the partial fractional Caputo

derivatives [31] are:

i1 {”;f‘%} (i0,9)" FS (5.1 =, 555 (i0,0) " 1 {22 0.}
—1<y<m meN
V2 —k—1 k
i T {aaﬁ#} (i0,0)" B0 = 9,0 [553 (10,00) T 15 (G0}
l1<y<nmneN.

This theorem has the same approach of theorem (6.1) but with fractional orders.

The results of the double SEJI integral transform of the functions xf (x,v), x*f (x,v), x"f (x,v), Vn € N are now
presented.
Theorem 6.5. Let F2; (s,7) be the double SEJI integral transform of the function f (x,y), then

. ' a (F2g(sm)
T (o) = 2. 2 (2020,

q1(s) 9s\ pi(s)
s C 2 _ @?p1(s) _6_2<F2;(S’r))
.72 f 1)} = a1(s)  0s2\ pi(s) J°
ciem Cpon — @O"p1(s) _ﬂ(FZ;(S’r))
111.ng{)( fle} qi(s)  as™\ pi(s) )
Proof: i.
We have
PG} = RS, = p,Op,@) [ | e @Oma0 16 axay
0 0
then,
F c : co ©o
ﬂsze—i(ql(s)xwz(r)y) FGuy dxdy, 3)
ORI,

Derive both sides of eq. (3) with respect to s, we find:

a9 [ Fl(s,m) ([ ;
_(Zg—> = ~ig,(s) f f e @Oy f(ry) dy dy,
ds pl(S)pz(T) 20

_lql(s)

T ®p(0 ng{)(f()(: 1) 4)

Thus,
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c —ip,(s) 0 FZZ(S,T)
Togtxf G6v)} = ) -a—s< o 08) )

ii. For the proof, we drive eq. (4) with respect to s and obtain:

af i o[ Falsm (.
[ : < %9 )] = _iq‘l(s)f f e~ @ x+a27) 42 £(3 ) dy dy,
00

a Cil (5) & P, (g)pz (T)
= M c 2
~ pu()p2(1) T2 fGen)}
By simplification we get:
()?pi(s) 02 <cm(s, r))
T c 2 g = - N g . .
Zg{X fO( Y)} CI1(S) 552 - (S)

iii. To proof this statement we use the mathematical induction:
Whenn =1, itis proved in (i).
The statement is true when n =k,

)k ok (Fag(s,7)
TogXf )} = QIO '—<—2g )

gi(s)  ask\ pi(s)

that means,
@D* 9% [ Fy )
CI1(5) ask (pl(s)pz(r)
Let n = k + 1, the differentiation of eq. (5) will be

) jje_i(lh(S)X‘HZz(T)V)Xkf()(,y) dydy. (5)
00

O (Fzz(S.T) )l cro
= —iq (S)J J e—l(q1(s)x+qz(r)y))(k+1 (G, y) dy dy,
s [ql(s) 95K\ p, ()p, () )

_ lql (s)
T p(p(r)

S\ k+1 k+1 (F,C (s,71)
T X fQon)} = ® s Pis) 9 — ( %9 ) n
g qi(s)  Os p1(s)
The next theorem has the same conclusion thanks to the same method of derivation as the previous one.
Theorem 6.6. We have
LS () = 0. 2 (Be0)
T2 WY = o Tno )
o (D)2p, () 9% (Fag(sm)
T30 o) = 5 ()

cen _ (i)npz(r) ) i FZ;(S:T)
i Ty 0" G ) = 20 22 (B,

2,0 Qo)
Then,

Similar to this, we suggest a double SEJI integral transform of the function xyf (x,v).
In the same manner, we propose double SEJI integral transform of the function
Theorem 6.7 We have

T.C PLOB® e 1 [ ] PP, 0 [Fag(sm
Zg{ny(X'y)}_Wq‘l(s)q‘z(r) 2g s,7) = 4,()q, ) Lasar 29(5 n|+ p2(1)d,($)g,) 35\ p1(s) +
2Py () @ (Fag(sm)
p1(9G ()G, ar \ p(r) [

Proof: According to the definition (2.1), we obtain
2 2 2

a o oo
FZZ(S' r) = Tzc{f()( Y} = - [pl(s)pz(r)f f e~ Ha1x+a2(Y) fo-ilar(x+a2(Iv) gy dy |,
00

(6)

dsor dsor

Equation (6) changes when the Leibnitz rule is applied with respect to s and 7.
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2

25(5,m) = f p,(s)e” ”“(S)X[ f p, (e =Y £(y,y)dy|d

We have
(e} [ee]

5] ) .
| =, ) ar = [[5,0) - id, @p, ] ey,

0 0
Therefore

<3}

Fot(sm) = f p,(s)e X [ [ 10,00 = 6,09, 7 sy |

2

dsar

oo

R = [ p@e o ( [ Zp @t )/)d)(> @

0 0

2

dsar

[«

N : 0 ,
— iq,(M)p, (e 10 ( f gpl(s)e‘“?l(s”f 12457 y)d)(> dy, (7)

0
A simple calculatlon we give that

f (p,()e™ O f(x,y)dy) = f [p,(s) — iq, ()p, (x| e X f(x, )y, (8)

f (p1()e™ 1 @xy) f(x,y)dy = j [p1(8)y — iq1 ()1 (] e OXf Gy, y)dy,  (9)
Substituting (15) (16) and (17) we obtain

Rl (s,r) = f B0 ( [ 3.0 - i ©p a1 y)d)(> dy

0

2

asor

[oe]

—i J P2 (1) g, (r)e~ 12y < J [D1(8)y — igy ($)p1()xy] e 11 f(y, V)d)(> dy,
0 0
= ()P f f e (O (3, y) dy dy — idy ()P, (F)py (5) f f e~y £y, ) dy dy
0 0 o o 0 0
— g, (PP ()P () f f e~ @XMy £(y,y) dy dy
00

0 ©o

+ 2Py (8)p2 ()1 () () f f (@00 yyf G y) dy dy,

N0 A0 GLONE). .
a—aerg(s.r)— O, Faf(s,) = 0.0 — T ren}—i EON o trf G )}
ql(s)qz(r)ng{)cyf(x,V)}.
) oy, p,0 . 1 2 , p,p, () 3 (Fag(sim)
gt} = o e 00 % " s a6 asar 20 @ pz(rm(s)q‘z(r)as( ~®) )

I O OIN ) (Fzgcs r))
p,()q,(s)g,(r) or \ p,(r)
From the results obtained in theorems (6.5) (i) and (6.6) (i), it follows that
c _ pl(S)pz(T) c 1 [ 0° c ] P1(5)152(T) i FZ;(SI T')
Ty eV = s, 06, 08,0 20 T a0 |asor 2| T 500, 54,005\ 2@

PP, 3 (Fag(sm)
P ()4, ©q,m) ar\ p,) ) "

7. Applications

The features of this transform that were previously defined are then used to solve some partial differential
equations. Assuming that ¥(x,t) has the double SEJI integral transform represented by TZZ{‘P()(, t)}, where

¥(x,t) be an unknown function with variables y,t > 0 .
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7.1. First-order partial differential equations

The general linear first-order partial differential equations have the formula
a¥,(x.t) + b¥.(x, t) + c¥(x, t) = h(x, t), (10)

With initial conditions

Y0 =fC0, PO, =g0), @11
where a, b, and c are constant coefficients and h(y, t), f(x) and g(x) are continuous functions. By applying (2) on
eq. (10) and using linearity property of this transform, we get

aTyg (W, (r O} + bTo5 (W, (o, O3 + cTof (W (1, O} = Tof {h(x, ).

According to results obtained in theorems for double SE]I integral transform partial derivatives, we have
aiq, (S)ng{lp(x: )} —ap, (S)Tgc{\p(o; t)} + biq, (T)ng{q/(X' t)} — bp, (T)Tz;{llu()(» 0} + CT2; Y t)} = Tzz {h(x, )},
therefore,

- Ty o th(x O} + apy (D TF{W(0, 0} + bp, (T {¥ (x, 0)} .
2g AP0} = aiq,(s) + big,(r) + ¢ ’ (12)

Such that aiq, (s) + big,(r) + ¢ # 0. Similarly, taking single SEJI integral transform to (11), we obtain respectively

T {Y( 0} =T7{f(} TP, 0} =T {g®)}. (13)
Substituting (13) in (12), it follows that

W00} = Ty th(x, t)}+apl(S)TC{g(t)}+bpz(r)TC{f()()}

aiq,(s) + big,(r) + ¢

Example 1
The general linear first-order partial differential equations
WX(X, t) = '}’t()(, t),

With initial conditions

Y0 =x %01 =t
Applying (2) on the differential equation, we get

TZ;{I‘UX(X» 0} = ng{q]t()(' 0}
According to results obtained in theorems for double SE]I integral transform partial derivatives, we have
= g ()T (¥ (0 0} = P (DTF{P(0, 0} = iq (NT,  {¥ O )} — p (DT, (¥ (1, 00},

= iq, ()T, (P, 0} = pr(DTFH{E} = iq, (T (¥ (r, 0} — p (N T, (-

Then,
(=D2p, (1) (=D2ps(s)
ey - RO “POTROF O @nela6R - lnor)
gt MY iq,(s) —in(rz S )[[qé()r)]z[q%(i])]z[ql(S) —q;(M]
¢ _ (=07p(8)p(N)1qi(s) + q,(r
R N TR TG
By taking the inverse of the double SEJI integral transform for the last equation, we obtain:
Y,t) =y +t
Example 2:

Ifweseta=b=1,c=0andh(y,t) = —2e~ ¥, f(x) =e™™, g(t) = et in equations (10) and (11), we have

(4t p1 ()P (r) . .
ng{h()( )} =T, { 2 )} = (1 F O+ [qz(r)]z)( 1+ qu(s))(—l + LqZ(T))'

—p1(s)(=1 + igy (s))

T {fQ} =Tj{e™*} =

(1 + [CI1(S)]2) '
_ —1+i
Ti{g(®)} =Ty{e ™} = Pz((17‘ )JE [qzzrr;;lzz)(r))'
Then,
T (¥ (r, )}

—2p(8)p, (r . . —P2(M)(—1+iq, (1) —p1(s)(—1 +igy(s)
OB em L @)1+ 60) + 6 = ot iy B2 )
iq,(s) +iq(r)
2P (=1+iqy(s)) (=1 + ig,(r))
T GOPA+ GO

’

The exact solution is
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el pl(s)pz(r)(—l + iql(s))(—l + iQZ(T))} (x40
YD =Ty { A+ [GOPA+ 60D ¢
Example3:

Y, (nt) + 3% (. t) +2¥(x, t) = —e™t,  (14)
Subjectto f(x) =1,9(t) =e,

then
c e v —p1(S)p, (1) . .
TZQ{h(X' t)} - ng{—e } - [ql(S)]Z(l + [qz(r)]z) lql(s)(_l + lCIz(T”)),
Y00} = T =,
_try _ ~P2(M(—1 +iq,(r)
Tito) = 5te7) = LT
Then,

-2 (P (1) . . —po (1) (=1 +iq, (1)) —ip,(s)
@A +a,eR O+ iaO)+p) = empy P01

ig,(s) +3ig,(r) + 2
_ p1(5)p2(7")i‘h(5)(—1 + i‘b(r))
B [q:()]*(1 + [q,(1)]?)

TS W (0} =

The exact solution for eq. (14) is
Y(y,t) =T c-1 pl(s)pz(r)iQ1(s)(_1 + iCIz(r))
4 - 12

g{ [0 + [3()]D) }=e—

7.2. Application to telegraph equation

The form of one dimensional linear hyperbolic telegraph equation is:
Y O t) + 2a% (x, t) + b*P(x,t) = ¥, (v, t) + h(x, t), (15)
with initial conditions
Y0 =00, ¥ 0) = £00,P0,1) = go(t), ¥,(0,8) = g,(0),
where (y,t) € [0,1] X [0,T], ¥ (x, t) is unknown function, a, b are constant coefficients and
h(x, t), fo), fi(x), go(t), 9,(t) are continuous functions. By applying (2) on eq. (15), we get
Tz;{llutt )} + ZaTzz{lIUt )} + bZng{q’(X; t)} = Tz;{'i’XXO(, t)} + ng{h()(’ t)},

So,
lig, (MIPT, {¥ G 0} = ig, (P (MTF (x, 003 — p (MTF Y, (x, 0} + 2aiq, (NT, (¥ (x, 1)} — 2ap, (DT, {¥ (x, 0)}
+ bZTZS{'P()(, t)}
= [ig; ()PT, (¥ (x, O} — iqy ()P, (TSP 0,0} — py OTHP, 0,0} + Ty th(x, 0},
therefore,
7,5 (W (r, 0}

_ lig2(r) + 2alp, (NTG{¥ (x,0)} + p, (N TF {¥, (x, 0)} + Tz;{h(x, )} = iq1($)p1 (TG {¥ (0, )} — p1 ()T {#, (0, )}

B liq,(M)]? — [ig, ($)]? + 2aiq, () + b?

(16)
Such that [iq, (r)]* — [iq,(s)]? + 2aiq,(r) + b* # 0. Similarly, taking single SE]JI integral transform to the initial
conditions, we obtain

THY(, 0} = TE ALY THP (03 = TEA (D3 (17)
THWO,0} = Tf{go®} TP, 0,0} =Tf{g, (0} (18)

Substituting (17), (18) in (12), we get

T, (¥ (1, 6))
_ liaa() + 200, T Lo () +pa (I GO + Toy (0, D) — 13 O (DT {90 W) ~ P T )
) (g2 (I — [iq; (5))? + 20iq; (r) + b? , (19)

By taking the inverse of the double SE]JI integral transform for the last equation, we get the exact solution of eq.
(15)

Example4:

Consider the following telegraph equations
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Y O t) + 2a%, (x, t) + b*¥P(x,t) = ¥, (x, t) + (=3 — 4a + b*)e * sinh y, (20)
with initial conditions

‘P()(,O) = ﬁ)(X) = Sinh){, lpt()(i 0) :fl()() =-2 Sinh){;
w(0,t) = go(t) =0, ¥,(0,t) = g,(t) = e™*, t=0

We have
-3-4 b?
TG 0) = D g feraey g, feraeaey)
_(=3-4a+b?) [pl(s)pz MDA +iq:())(=2+16,() _ P12 ()(=1 +iq1(5)) (=2 + i (1))
2 1 +[0:OP ¢+ [P A+ ¢+ [0,
1 ()P (N (=2 +ig, (1)) ] @D
1+ E + .M
—p1(s) 2p,(s)

Ty th(, O} = (=3 —4a + b?) [

Ty {fo(0)} = T {sinh x} = T GG Ts{fiC0)} = Ty {—2sinh x} = TH GG (22)
T5000) =0, T5(g,(0) = T5te) = Q2L G0 23)
Then, by substituting (21), (22) and (23) in (12) with simplification, we get
TS (W (x, )} = —p1 (P2 (1)
%g ' 1+ [Ch(S)]Z)(Z + iQZ(T)),
—p1 ()P, (1) (2-ig,(M) _ pi©po(M)(=2 +ig, (M)

L = o @) (=) O+ GG+ 0P

The exact solution for eq. (20) is

-l p1(5)p2(7")(_2 + iCIZ(r)) ot
v =1 P T T = o
Example 5:
Consider the following telegraph equations

Y (0 t) + 2a¥, (x, t) + b*¥(x, t) = ¥, (x, t) — 2asin(y) sin(t) + b? sin(x) cos(t), (24)
Subject to the following initial conditions

Y 0) = fo00) =sin(), %0 = £ =0,
¥(0,t) = go(t) =0, ¥,(0,t) = g,(t) = cos(t), t=0

By the formula 5.10, we have
ng{h()(, t)} = 2aT{ {sin(N}T{ {sin(t)}+b2T {sin(x)} T4 {cos(t)},
_ —Za[ —p1(s) ] [ —p2(r) ] b2 [ —p1(s) [_ipz(r)‘h(r)
[g:(9)]? = 1] |[g.(M)]* -1 [q:()]? = 1f [ [g:(M]* 1]
p1(s)p; (r)(—Za +ib%q, (7”)) (25)
([0:(9)]? = D(g.(M]> = 1)’
—P1(s)

Ty {fo (0} = Ty {sin()} = RO, T {A00} =0, (26)

T5{90()} = 0, T5{g:(0)} = Tf{cos(®)} = %

Then, by substituting (25), (26) and (27) in (16) with simplification, we get

c _ ip1(s)q,(r)
T O} = O - DA OF — D

T, (h(r, )} =

27

The exact solution for the eq. (24) is

Y, t) =T,
@O =T T@®F - DeoF -
Klein-Gordon equation
The standard form of linear Klein-Gordon equation is:

lPﬁf (X' t) - le){){(Xv t) + aq’(){' t) = h(X' t)' (28)

c—l{ ip1(s)q,(r) } = sin(x) cos(t)

with initial conditions

Yo 0) =l Y0) =00, W0O,t) = go(t), ¥:(0,0) = g,(0),
Applying (2) on eq. (28), we get
Ty (¥ (0 0} = T (W 6 O} + aTyf (¥ (0, O3 = T {R(r, O}
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= [ig, (NPT (¥ (1, 03 = iq (Mpo (DT {P (1, 00} — p, (DTF{P: (0} — [iga (D] T (¥ (, O}
+ lql (5)191 (S)T;{l‘l’(oi t)} + D1 (S)T;{q’x (0' t)} + aTZZ {q’(){' t)}TZZ {h()(' t)}:

iq; (P, (TP (x, 00} + p, (MTEHY, (x, 00} — iqy ($)py (HTE{P(0, )} — py (HTE{W, (0,0}

oy Q03 = [P —[10:G)F +a - (29)
With taking single SE]I integral transform to the initial conditions, we obtain
THWO,0Y =T g}  T{# 0.0} =T/{g.(®} 3D
Substituting (37), (38) in (36), we get
c _1q;(Mp,(MTG {00} + p (DTS00} — iqi ($)p1 ()T {go(0)} — p1 ()T {91 (D)}
oy P Q03 = [i,(F —[ia, P +a -(82)
Example6:

To solve the linear homogeneous Klein-Gordon equation:
Y Q0 t) = ¥, 0 ) =¥ (. t) = 0, (33)
Subject to the following initial conditions

‘P(X' 0) = ﬁ)()() = 0' q’t(x' 0) zfl()() = Sil’l()();
W(0,t) = go(t) =0, ¥, (0,t) = g,(t) =, t=0

we have
LEhGLD} =0, (34
TEUGY = 0, TR WY = T5n00) = — P, (39
Ts{go(®)} =0, T5{g:(O)} =T5{t} = %. (36)

Then, by substituting (34-36) in (12), we get
—11(5) (=D%p, (1)
2] 6 e ARl WG
lig, (] — [iqi()]* — 1 ’
p1()p, (1)

QRAOIEEE
The exact solution for the eq. (33) is

el p1 ()P, (1) el —p2(7) ) —p1(s)
=T {([ql(s)]z - 1>[q2(r)]2} =Tz {[qz(r)]z @G = 1>}
By the formula 5.10, we get

T.c -1 { —p,(r) . —p1(s) } = et {(_i)zpz ) }Tc_l { —p1(s) }
20 [g.(M1* {q: (92— 1) g le.M1? )9 (A=D1 )
Yy, t) = tsin(y).

LW, ) =

8. Conclusion

In two-dimensional spaces, we developed a brand-new transform called the double SE]I integral transform
that was derived from the SEJI integral transform. The convolution theorem and certain fundamental features
connected to this new transform are demonstrated. We introduced some partial differential equations and used
the recommended transform to find the solutions to these equations in order to demonstrate the efficiency of
the transform. Future research on the behavior of the double SEJI integral transform and how higher order and
fractional order partial differential equations might be affected by it are both essential.
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