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Abstract

As the mathematical properties of Fractional Partial Differential Equations are rapidly being developed, there is an increas-
ing desire by researchers to employ these models in real world data oriented contexts. The main barrier to employing these
models is the choice of the fractional order α. Recently, [6] show how to both estimate and make inferences about α from a
Bayesian perspective. However, for experimental settings one needs to be able to design experiments that will provide optimal
information about α. This work demonstrates how to use information based criteria, namely A, D and E optimality, to choose
sampling locations in follow-up designs. Specifically, the simultaneous addition of one, two and three measurement locations is
considered for a simple example. The simultaneous addition of four and five measurement locations is also considered across
a variety of values of α. The results show that each of the criteria provide different optimal measurement locations as the
number of additional measurement locations is increased. Indicating that the choice of optimality criteria should not be decided
arbitrarily. ©2023 All rights reserved.

Keywords: Bayesian Estimation, Optimal Experimental Design, Modeling error, Analytical approximate solution,
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1. Introduction

Fractional Partial Differential Equations (FPDE) are growing in interest among researchers confronted
with modeling flow through porous materials [3, 12, 16, 17, 18, 23, 24, 28, 14, 6]. The reason behind that
is there are many phenomena in nature which are not described adequately by regualar derivatives and
so there is a need for fractional calculus. Among them are crowded systems, such as protein diffusion
within cells, [40], and diffusion through porous media. Here fractional differential equations sometimes
provide a better description, see [17, 11]. Though fractional calculus has a long history, its application in
many fields of science and engineering is relatively new. Recently, there has been many works related
to fractional calculus and its application. For example, Sadek et al. [31, 32, 33, 34, 35, 36] considered
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their applications to Riccati differential equations of fractional order, controllability and observability for
fractional linear dynamical systems. In recent articles Ghanam and Boone [14] took a new approach
for which they were interested in estimation and hypothesis testing applied to fractional fluid transport
models. In particular, estimatation of various parameters associated with the model such as the fractional
derivative parameter α as well as measurement error. Once empirical data is collected the parameters
can be estimated using techniques discussed in [6]. However, generating this empirical data may require
experimentation on samples of the porous materials under study.

In this article we consider the mathematical model presented in [6] for which a parameter estimation
for the fractional derivative order α is obtained and apply that to solve an optimization problem related to
design of experiment. In this work, we consider how to place sensors for observation along the distance
from the pressure source axis x using a follow-up study approach. Figure 1 shows and example of how
an experimental set up may look. Pressure is applied to one end of the porous material and at specified
distances x1, x2, ...xk sensors are placed to measure the pressure output at those locations at various times
t from the pressure being applied, denoted p(xi, t). Notice that the choice of locations of the sensors may
or may not be optimal for learning about the parameters that govern the process. The question posed
here is: How can a follow-up study framework allow for better estimation of the parameters, specifically
the fraction parameter α.

Figure 1: Example experimental device with pressure input, sensors at various locations and resulting p(x, t) measurements.
Blue sensors correspond to the base design and the red sensors are the additional sensor as suggested via the follow-up design.

The follow-up approach to design of experiments consist of two parts, first, a base design is conducted
where sensors are placed and initial data is obtained and the information is used to help determine
where the additional sensors are placed for the second stage of experimentation, the follow-up design. The
advantage of follow-up studies is that researchers can place the additional sensors in locations that will
allow for the most information about the parameters to be learned from the data. Experimental Design
is a broad field in statistics which is covered well by [27] and [19]. For this study, a base design with
six locations chosen arbitrarily, and follow-up designs with 1, 2, 3, 4 and 5 possible new locations are
considered. In Figure 1, the blue sensors reflect the base design and the green sensors reflect the addition
of three sensors once data has been collected from the base sensor. These three green sensors are the
follow-up design, in which the locations are chosen to minimize the volume of the Variance-Covariance
matrix of the model parameters. In this optimization problem, we use three different techniques: A, D
and E optimality and make a comparison across these methods. Each of these criteria use an information
approach, specifically, Fisher’s information. For more information about these methods we refer the
reader to [27] and [19].

The outline of the paper is as follows: In Section 2, we give the various definitions of fractional deriva-
tives and some properties related to their Laplace transforms. In Section 3, we state the mathematical
model under consideration and define the problem under invistigation. In Sections 4 and 5, we provide
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simulated examples the design of experiment optimality criteria. In Sections 6 and 7, we provide the new
results and discussion.

2. Preliminaries of Fractional Calculus

In this section, we state some definitions and results from fractional calculus, see [21, 37, 7, 8].

Definition 2.1. Riemann-Liouville Fractional Integral of order α for an absolutely integrable function f(t)
is defined by

(0I
α
t f) (t) :=

1
Γ(α)

∫t
0
(t− τ)α−1f(τ)dτ, t > 0,α > 0, (2.1)

when the right hand side exists, and Γ(α) is defined by

Γ(α) =

∫∞
0

tα−1e−tdt. (2.2)

Definition 2.2. Riemann-Liouville Fractional Derivative of order α > 0 for an absolutely integrable func-
tion f(t) is defined by

(0D
α
t f) (t) =

1
Γ(1 −α)

d

dt

∫t
0

f(τ)

(t− τ)α
dτ, t > 0, 0 < α < 1. (2.3)

Definition 2.3. Caputo Fractional Derivative of order α > 0 for a function f(t), whose first derivative is
absolutely integrable, is defined by

(∗0D
α
t f) (t) =

1
Γ(1 −α)

∫t
0

f
′
(τ)

(t− τ)α
dτ, t > 0, 0 < α < 1. (2.4)

Proposition 2.4. The Relationship between Caputo fractional derivative and Riemann-Liouville fractional deriva-
tive is given by

(∗0D
α
t f) (t) =0 Dα

t f(t) − f(0+)
t−α

Γ(1 −α)

=0 Dα
t

[
f(t) − f(0+)

]
.

(2.5)

Definition 2.5. Hilfer Fractional Derivative of order α > 0 and type β for an absolutely integrable function
f(t) with respect to t is defined by,(

D
α,β
t f

)
(t) =

(
0I

β(1−α)
t

d

dt
I(1−β)(1−α)f

)
(t), t > 0, 0 < α < 1, 0 ⩽ β ⩽ 1. (2.6)

Proposition 2.6. The Laplace transforms of fractional derivatives are given by:

L[∗0D
α
t f(t); s] : = sf̃(s) − sα−1f(0+), 0 < α ⩽ 1, (2.7)

where
f(0+) : = lim

t→0+
f(t).

L[0D
α
t f(t); s] : = sf̃(s) −

(
0I

1−α
t f

)
(0+), 0 < α ⩽ 1, (2.8)

where(
0I

1−α
t f

)
(0+) : = lim

t→0+

(
0I

1−α
t f

)
(t)

L
[
D

α,β
t f(t); s

]
: = sf̃(s) − sβ(1−α)

[
0I

(1−β)(1−α)f(0+)
]

, 0 < α < 1, (2.9)

where(
0I

(1−β)(1−α)
t f

)
(0+) : = lim

t→0+

(
0I

(1−β)(1−α)
t f

)
(t)
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It is clear from Proposition 2.6 that the differences in these Laplace transforms are in the initial data
f(0+),

(
0I

1−α
t f

)
(0+), and

(
0I

(1−β)(1−α)
t f

)
(0+).

Lemma 2.7. Assume that f(t) is continuous on [0, T ], for some T > 0, then

lim
t→0+

(0I
α
t f) (t) = 0,

for α > 0.

Proof. Let 0 ⩽ t ⩽ T , then ∣∣∣∣∫t
0
(t− τ)α−1f(τ)dτ

∣∣∣∣ ⩽ ∫t
0
|t− τ|α−1|f(τ)|dτ

⩽ M

∫t
0
|t− τ|α−1dτ

⩽ M.
−(t− τ)α

α
|t0

⩽
M

α
tα → 0 as t → 0.

Definition 2.8. A one-parameter Mittag-Leffler Function is defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk+ 1)
, α > 0. (2.10)

Definition 2.9. A two-parameter Mittag-Leffler Function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk+β)
, α > 0,β > 0. (2.11)

3. The Problem statement

This work focuses on a particular time-fractional advection-diffusion system given by (3.1) [25, 2],
which is relevant to applications in transport through porous media. Our task is to provide experimental
design so that inferences on parameters for the fraction, α, and the experimental error variance σ2 carry
the optimal amount of information.

∂αp

∂tα
=

∂

∂x

(
D
∂p

∂x

)
−U

(
∂p

∂x

)
, t > 0, x > 0, (3.1)

where ∂αP
∂tα is the Caputo fractional derivative of order α defined in Eq. (2.4)

3.1. The Model
The model considered here comes from equation (1.3) where we take D = 1 and U = 1 and the initial

condition is p(x, 0) = e−cx, (c > 0), and the boundary condition is p(x, t) → 0 as x → ∞. This yields the
linear system,

∂αp

∂tα
=

∂2p

∂x2 −
∂p

∂x
, t > 0, x > 0. (3.2)
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Figure 2: Plots of p(x, t) across various values of α. Panel (a) shows plots of p(x, t) across α = 0.5, 0.6, 0.7, 0.8 when t = 1.0. Panel
(b) shows plots of p(x, t) across α = 0.78, 0.80, 0.82, 0.84 when x = 0.1.
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Figure 3: Plots of p(x, t) across x and t when α = 0.82. Panel (a) shows plots of p(x, t) across x when t = 0.1, 0.25, 0.4, 0.55. Panel
(b) shows plots of p(x, t) across t when x = 0.0, 0.5, 1.0, 1.5.

For this work we will assume c = 1 for simplicity, and in this case p(x, t) has a closed form solutionn
given by:

p(x, t) = e−x
∞∑

k=0

2tαk

Γ(αk+ 1)
. (3.3)

The fractional differential equation of interest is taken from [25] to model the pressure as a function of
time t and location x. Figure 2 shows the behavior of the solution across various values of α. Panel (a)
shows the influence of α across x when α = 0.5, 0.6, 0.7, 0.8 at time t = 1.0. Notice that as α increases the
pressure is dampened or compressed towards zero. In Panel (b) the pressures is shown across t for values
of α = 0.78, 0.80, 0.82, 0.84. Again, as α increases there is a dampening effect on the pressure. Figure 3
shows the solution across values of x and t when α = 0.82. In Panel (a) the solution is plotted across x for
t = 0.1, 0.25, 0.4, 0.55. Here as x increases there is an exponential reduction in the pressure, however, as t

increases the pressure also increases. Panel (b) plots the solution across t for x = 0.0, 0.5, 1.0, 1.5. Again,
as t increases the pressure does as well, however, as x increases the pressure is reduced.
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3.2. Statistical Model
A Bayesian approach is used to estimate the parameters in the model which requires that both a

likelihood be specified as well as prior distributions on the model parameters [39].

Y(xi, tj) = p(xi, tj)ϵ(xi, tj) =

[
e−xi

∞∑
k=0

2tαk
j

Γ(αk+ 1)

]
ϵ(xi, tj), (3.4)

where ϵ(xi, tj)
iid
∼ LogNormal(1,σ2). Here the LogNormal likelihood is chosen to ensure that pressure is

always a positive value. Let y(xi, tj) be the observed value of Y(xi, tj) where i = 1, ...,nx and j = 1, ...,nt.
In this specification, the likelihood has two parameters, α and σ2. The prior distribution for α and σ2,
π(α,σ2) are specified as α ∼ Beta (α∗,β∗) to reflect the prior knowledge that α is bound between 0 and
1. For σ2 the prior distribution is specified as σ2 ∼ χ2(df) to reflect the prior knowledge that σ2 must be a
positive value. For more on prior distribution and selection see [5].

For notation let x be all xi values and t be all the values of tj and y(x, t) be all the corresponding
values of y(xi, tj) observed and p(x, t) be all the solutions at the corresponding location and time values.
The posterior distribution π

(
α,σ2|p(x, t),y(x, t)

)
can be found using Bayes’ Theorem [4]:

π
(
α,σ2|p(x, t),y(x, t)

)
=

π(α,σ2)L(y(x, t)|p(x, t),α,σ2)∫
π(α,σ2)L(y(x, t)|p(x, t),α,σ2)dαdσ2 . (3.5)

In the case considered here there is no analytic solution to π
(
α,σ2|p(x, t),y(x, t)

)
and hence sampling

method must be employed to draw samples from the posterior distribution, from which all inferences
will be made. There are many choices for the algorithm to sample from the posterior distribution such as
Acceptance Sampling, Metropolis-Hastings Sampling, Sampling Importance Resampling, etc. For more
on sampling algorithms see [15], [13], [1].

The posterior predictive distribution will be needed to determine the impact of adding a new mea-
surement location by obtaining predictions of the outcome, Ynew at a new proposed location Xnew. The
posterior predictive distribution is given by:

π (Ynew(Xnew, t)|p(x, t),y(x, t),Xnew, t) =
∫

L
(
Ynew(Xnew, t)|p(Xnew, t),Xnew, t,α,σ2)

× π
(
α,σ2|p(x, t),y(x, t)

)
dαdσ2. (3.6)

Notice that the predictive distribution is a probability distribution and hence any predictions generated
from it are essentially random samples from the distribution.

4. Simulated Example

Suppose the system of interest is given by (3.3) where α = 0.82. Further suppose that data for y(x, t)
has been observed, with noise, at all combinations of nx = 31 equally spaced levels of x from 0.01 to 10
and nt = 11 equally spaced times t from 0.5 to 1.5 and the noise is multiplicative following a LogNormal
distribution with mean 1 and σ = 0.1. Figure 4 shows the unperturbed data surface in panel (a) and the
perturbed data surface in panel (b). Notice that this set parameter specification produces a quite noisy
surface. In real world situations we would expect to observe perturbed data similar to that in panel (b).
The goal of this work is to determine if statistical techniques can be used to adequately estimate the
parameters of the underlying surface when presented with noisy data.

The prior distributions for α and σ were specified as follows for both Model 1 and Model 2:

α ∼ Beta(3, 3)
σ2 ∼ χ2(1).
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(a) (b)

Figure 4: Simulated exmple of ( (3.3)) with no noise (a), α = 0.82 and with noise σ = 0.1 (b).

Using the LogNormal likelihood, the prior above and Bayes Formula the posterior distribution is given
as:

π (α,σ|y(xi, ti),p(xi, ti)) ∝ αα∗
(1 −α)β

∗
(σ2)k/2−1e−σ2/2

× e
− 1

2σ2
∑nx

i=1
∑nt

j=1(lny(xi,tj)−p(xi,tj))2

× σ−nx−nt

nx∏
i=1

nt∏
j=1

y(xi, tj)−1 (4.1)

= α3(1 −α)3(σ2)−1/2e−σ2/2

× e
− 1

2σ2
∑nx

i=1
∑nt

j=1(lny(xi,tj)−p(xi,tj))2

× σ−nx−nt

nx∏
i=1

nt∏
j=1

y(xi, tj)−1.

The Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm was employed to draw 1,000
posterior samples to be used for all inferences. Note that the sampler was tuned in order to find appro-
priate step-sizes and any samples from this tuning were discarded. Traceplots were examined to ensure
convergence of the sampler to the region of high posterior density.

5. Design Optimality Criteria

As the goal of the study is determine new measurement locations along x which will provide better
estimates for α and σ, one must define “better”. One popular approach is to work with the information
generated by the addition of the new measurements. Fisher’s Information is often used to provide a
theoretical framework for determining the information from a sample which is given by (under certain
regularity conditions) [9], [39]:

[I(θ)]i,j = −E

[
∂2

∂θi∂θj
logf(X|θ)|θ

]
, (5.1)

where θ is the parameter vector and f is the probability density associated with the likelihood. In many
cases, such as standard linear models, one can find an explicit form for this analytically using Fisher’s
Information. For example, the model Z ∼ N(Wβ,Σ), the Fisher information matrix is given by I(β) =
W ′Σ−1W. The variance-covariance of the least squares estimator for β in this general linear model is given
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by Cov(β) =
(
W ′Σ−1W

)−1 [27]. In particular, notice that Cov(β) = I(β)−1 in this case. In general, if the
estimator θ̂ is efficient then it achieves the Cramér-Rao lower bound which is given by Cov(θ̂) = I(θ)−1.
If θ̂ is not efficient then Cov(θ̂) ⩾ I(θ)−1. Hence Cov(θ̂)−1 provides a reasonable approximation to the
Fisher information matrix I(θ) [9].

In our case, smaller variance of the joint posterior distribution of α and σ is preferable. Hence we
wish to minimize the variance-covariance matrix of α and σ. This issue is how does one determine if one
matrix is better than another? Typically one would look at the quadratic form associated with the matrix.
If C1 and C2 are matrices where x ′C1x < x ′C2x for all x ∈ Rn, then we would say that C2 dominates
C1 and hence C1 would be considered smaller. However, this approach is difficult to implement in
practice. Instead other criterion have been developed such as considering the trace of the matrices. If
trace(C1) < trace(C2) then C1 is smaller than C2. In the variance-covariance context the trace is simply
the sum of the marginal variances of each of the random variables. Another popular technique is to
compare the determinants of the matrices. If |C1| < |C2| then C1 is smaller than C2. Similarly, one could
consider the largest eigenvalues of each of the matrices and rank on those.

Let Ξ be the set of all experimental designs (measurement locations) under consideration with ξj be an
individual design. Three popular criteria to evaluate experimental designs based on Fisher Information
are A-optimality, D-optimality and E-optimality. [27, 19, 20]:

• A-optimal: An experimental design, ξ∗ is considered A-optimal if:

trace (I(α,σ|ξ∗))−1 < trace
(
I(α,σ|ξj)

)−1

for all ξj ∈ Ξ.D− optimal : Anexperimentaldesign,ξ∗ is considered D-optimal if:

|I(α,σ|ξ∗)−1| < |I(α,σ|ξj)−1|

for all ξj ∈ Ξ.

•• E-optimal: An experimental design, ξ∗ is considered E-optimal if:

max Eigenvalue
(
I(α,σ|ξ∗)−1) < max Eigenvalue

(
I(α,σ|ξj)−1)

for all ξj ∈ Ξ.

Let Ynew, ξj denote the new outcome vector p(Xnew, t) where Xnew is defined by experimental design
ξj. In this case an analytic for Fisher’s Information is not available for π

(
α,σ|y(xi, ti),p(xi, ti), Ynew,ξj

, ξj, t
)
.

Here the empirical posterior variance-covariance matrix is a substituted as a reasonable approximation
to Fisher’s information matrix. Let (α1,σ1), (α2,σ2), ..., (αm,σm) be the m MCMC samples drawn from
π
(
α,σ|y(xi, ti),p(xi, ti), Ynew,ξj

, ξj, t
)
. The variance-covariance matrix of the posterior samples from de-

sign ξj is estimated by:

Ĉovj
(
α,σ|y(xi, ti),p(xi, ti), Ynew,ξj

, ξjt
)
=

1
m− 1

m∑
k=1

[(
αk

σk

)
−

(
ᾱ

σ̄

)][(
αk

σk

)
−

(
ᾱ

σ̄

)] ′
, (5.2)

where ᾱ = 1
m

∑m
k=1 αk and σ̄ = 1

m

∑m
k=1 σk. Hence we can reformulate the optimality criteria by simply

substituting Ĉovj
(
α,σ|y(xi, ti),p(xi, ti), Ynew,ξj

, ξjt
)

for
(
I(α,σ|ξj)

)−1.
Algorithm 1 gives a step-by-step presentation of method proposed here. Note that in Step 7 the MCMC

samples are based on both the base design obervations and the predicted observations for the follow-up
design under consideration.
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Algorithm 1 Algorithm to determine A, D and E optimal designs.
1: Set prior distribution parameters for α and σ.
2: Set base design sampling locations x and sampling times t.
3: Conduct the experiment using the base design and taking measurements y(x, t).
4: Obtain MCMC samples for α and σ

5: for ξj ∈ Ξ do
6: Sample Ynew,ξj

from π
(
Ynew(Xnew, t)|p(x, t),y(x, t),Xnew, ξj, t

)
using MCMC samples from step

4.
7: Obtain MCMC samples for α and σ from π

(
α,σ2|p(x, t),y(x, t), Ynew,ξj

,Xnew, ξj, t
)
.

8: Calculate Cj = Ĉovj
(
α,σ|y(xi, ti),p(xi, ti), Ynew,ξj

, ξjt
)
.

9: Calculate and store Aj = tr(Cj), Dj = |Cj| and Ej = maxEigen
(
Cj

)
.

10: end for
11: Examine Aj, Dj and Ej to determine the optimal design ξj for each criteria.

Note that in Step 5 in Algorithm 1 there may be a huge number of design points. Suppose there are Λ

possible measurement locations and λB are chosen for the base design and λF will be chosen for follow-

up design points, then
(
Λ− λB

λF

)
possible follow-up designs exist. For example, if there are 48 possible

measurement locations and six are chosen in the base design and five additional measurement locations

will be chosen, then there are
(

48 − 6
5

)
= 850, 558 possible follow-up designs. This is a large number

of possible designs to calculate, hence a search algorithm such as Simulated Annealing can be employed.
While this does not enumerate all the designs in Ξ it searches to find the one that meets the optimality
criteria. This will necessitate that each criterion evaluated separately instead of simultaneously in step
5(d). For more on simulated annealing see [22].

Both the MCMC sampler and the Simulated Annealing algorithms are programmed in MATLAB
2022b. To explore 1,000 candidate design combinations from the design space, computation took approx-
imately 1,200 seconds using an Intel Core i5 Quad-Core processor at 3.8 GHz and 32GB of RAM. MCMC
diagnostics such as trace-plots and ACF plots were examined throughout the process, which showed
MCMC sampler converged to the region of high posterior density with high acceptance probability.

6. New Results for Design of Experiments

To consider the effect of σ and the number of additional measurement locations on the follow-up
design location(s) for the A, D and E criteria when α = 0.82 is performed using a base design of 0.2,
1.0, 2.0, 5.0, 7.0, and 10.0. On all studies 1,000 MCMC samples are used for parameter estimation. For
one additional location all 42 candidate locations are considered, for two additional locations all 946
candidate combinations are considered and for three additional locations simulated annealing is used
with 1,000 steps. Table 6 shows the location results for the follow-up designs for A, D and E criteria when
α = 0.82 and σ ∈ {0.01, 0.1}. Notice that for one additional sensor and σ = 0.1 all three criteria produce a
follow up measurement location at 4.2. Similarly for σ = 0.01 all three criteria produce the same follow
up measurement location at 6.2. When two additional measurement locations are allowed and σ = 0.1
both the D and E criteria produce follow-up locations at 0.4 and 4.2. However, the A criterion produces
a different pair of locations at 1.2 and 2.6. This shows that the three criteria do not necessarily produce
the same values which would suggest that the choice of criteria can be arbitrary. For the three additional
location scenarios the criteria do not produce the same set of locations. However, the D and E criteria do
produce one of the locations to be 2.6 in the σ = 0.01 case. Of further note is that for the A optimality
criterion the choice of locations are the same across σ = 0.01 and σ− 0.1.
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Table 1: Selected follow-up designs for the A, D, and E criteria. Base design is 0.2, 1.0, 2.0, 5.0, 7.0, and 10.0. For this simulation
α = 0.82,σ = 0.1 and σ = 0.01.

Variance Additional Criteria Design
σ = 0.1 1 A 4.2

D 4.2
E 4.2

2 A 1.2, 2.6
D 0.4, 4.2
E 0.4, 4.2

3 A 6.0, 8.2, 9.6
D 2.6, 4.4, 7.6
E 2.2, 6.2, 8.0

σ = 0.01 1 A 6.2
D 6.2
E 6.2

2 A 0.4, 6.4
D 6.0, 8.4
E 4.4, 9.8

3 A 6.0, 8.2, 9.6
D 0.4, 0.8, 2.6
E 1.6, 2.6, 5.6

To examine the effect of α on the optimal design location for four and five simultaneously added
locations a simulation study was performed by varying α at values 0.3, 0.4, 0.5, 0.6 and 0.7 and keeping
σ = 0.1. Using the approach for the one, two and three additional sensor study above, a simulated
dataset was generated for each value of α with base design locations 0.2, 1.0, 2.0, 5.0, 7.0 and 10.0. Using
each of these datasets the A, D and E optimal locations were found by employing the MCMC combined
with simulated annealing approach with 1,000 search steps for the MCMC estimates and 1,000 simulated
annealing steps.

Figure 5 shows the results of the study with the A optimal locations denoted by a blue circle (◦), D
optimal dented by a black triangle (△) and E-optimal denoted by a red plus sign (+). Notice that the A
optimal points tend to be placed at higher and higher values as alpha is increased. This is less prominent
in the E optimal locations which do seem to increase as well. The D optimal solutions exhibit a similar
pattern of increasing the follow up design points, however, to a much smaller magnitude than both A or
E optimality.
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Figure 5: Follow-up design locations for α = 0.3, 0.4, 0.5, 0.6, 0.7 with four simultaneously added locations for A(◦), D(△) and
E(+) optimality criteria. Base design is 0.2, 1.0, 2.0, 5.0, 7.0, and 10.0 with σ = 0.1.

Figure 6 shows the results of the study with the A optimal locations denoted by a blue circle (◦), D
optimal dented by a black triangle (△) and E-optimal denoted by a red plus sign (+). Notice that the A
optimal design points are consistenly placed above 1.8 and spread across the remaining design points at
random with high values near 9.0 and 10.0 common. This is in contrast to the E optimal locations which
are much higher for α = 0.3 but spread out more evenly across the design space for the other values of α.
Of particular interest is the D optimal solutions that are above 3.5 for α = 0.5 and 0.6 and rather randomly
placed across the other values of α. The differences here between the four and five location follow up
designs may be due to the base design choice which contains considerable information so additional
points can be spread across a wider range of values.
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Figure 6: Follow-up design locations for α = 0.3, 0.4, 0.5, 0.6, 0.7 with five simultaneously added locations for A(◦), D(△) and
E(+) optimality criteria. Base design is 0.2, 1.0, 2.0, 5.0, 7.0, and 10.0 with σ = 0.1.

7. Discussion

This study shows how to use MCMC and Simulated Annealing techniques to simultaneously place
new experimental measurement (sensor) locations for FPDEs. By first considering a specific example
where α = 0.82 with two different variances and one, two and three addidtional measurement locations.
For the one additional measurement location, all three optimality criteria give the same new location, only
depending on the model variance. As additinoal measurement locations are added, the three opotimality
criteria provide different optimal locations. For a more general exploration α = 0.3, 0.4, 0.5, 0.6 and 0.7 is
considered with four and five additional measurment locations. As the number of measurement locations
incrases each of the optimality criteria provide different locations.

Of particular interest is when the number of additional measurement locations is increased the more
spread out the locations become across the design space. This could be an artifact of the base design
chosen as it may not contain enough information to guide placement. An additional study should be
conducted to determine if replication of base design measurements provides a stronger pattern in the
follow-up measurement location across the values of α.

Another area that should be explored is sequentially adding follow-up measurement locations instead
of the simultaneous approach taken here. In a sequential approach, a new measurement location will be
chosen based on each of the criteria and that location will be kept and additional locations will be chosen
one by one. For example when α = 0.82 and σ = 0.1, Table 6 shows that all three methods chose 4.2 as the
next optimal location if only one sensor is added (6.2 was chosen when σ = 0.01). How do the additional
measurement locations change across various values for α for each of the different criteria? While the
approach seems to be straightforward there are several scenarios that need to be addressed. If the sensors
can be reused then one could gain additional measurements at already established sensor locations and
hence there is a built in replication occurring, albeit unequal replication. If the sensor cannot be reused
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then at each step no additional information from other sensors can be obtained. While this may seem
trivial, in many applications sensors may be single use and should be studied.

Note that the criteria used here focus on estimating the parameter α. However, in many applications
estimation may not be the goal. Instead, a researcher may be interested in whether or not using a FPDE is
warranted. In the case when α = 1, a standard PDE could be used. If the goal is to conduct a hypothesis
test H0 : α = 1 versus HA : α ∈ (0, 1), then the criteria should be changed accordingly. A Bayes factor
approach to testing this has been presented in [6]. A similar study for the simultaneous addition of
sensors could be performed.

More complex models and models with larger parameter spaces should be included in future work
where numeric solvers more than likely need to be employed to solve such complex fractional differential
equations and systems. Many real world applications of fractional calculus and differential equations
exist where Bayesian methods and estimation is important. These range from viscoelastic diffusion in
complex fluids [30], anomalous diffusion [10], fractional order control problems [26], biological systems
[29], and a lot more [38]. Determining the accuracy of the numeric solver and its impact on inferences
should be examined to ensure that the choice of numeric solver does not unduly influence any parameter
inferences or predictive distributions.
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