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Abstract. The topological structure is a more general mathematical model that helps in solving many problems in digital

topology and its applications. In this paper, we introduce and study some general forms of separation properties based on

operations. The notions of generalized closed set and T1/2-spaces are further investigated using operation approaches. As

applications, it is shown that the Khalimsky line (digital line) is a typical example of µr,s − T1/2-spaces, where µr = int and

µs = int− cl.
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1 Introduction

General topology has applications in the theory of image processing by exhibiting algorithms which applies to the
current knowledge of digital topology (i.e., the study of the geometric and topological properties of digital images).
Problems that might arise are, for example, finding connected components, set boundaries or any other operations
which are needed in image processing. The well-known digital Jordan curve theorem is proved by using topological
approach ([17, 19, 29]). The theorem is important in the theory of computer graphics.

Topologically speaking, the computer and the television screen look like a rectangular portion of R2 granted.
They are greatly magnified as revealing themselves as a rectangular or hexagonal array of dots. In the process of
digitizing a movie, time is discretized, resulting in a finite seeming rectangular solid in R3.

These situations are often represented by subspaces and quotients of locally finite topological spaces, so their
study is important. The basic building block of the digital n−space is the digital line or the so called Khalimsky
line ([17, 18, 20, 22]). This is the set of the integers, Z, equipped with the topology K, generated by SK =
{{2n − 1, 2n, 2n + 1} : n ∈ Z} as a subbase. Thus a set U is open in K if and only if whenever x ∈ U is an even
integer, then x− 1, x+ 1 ∈ U . Nowadays, this topology, called the Khalimsky topology, is one of the most important
concepts of the digital topology. It has been studied and used by many authors, e.g., ([2-11, 15, 17-20, 22, 24-29]).

The digital line, the digital plane, the three-dimensional digital space are of great importance in the study of
applications of point-set topology to computer graphics [17]. Papers [12, 14, 20, 23, 28], are topological approaches
of digital spaces, that is ”topological digital topology”.

The concept of operations on the power set was introduced and investigated by Abd El-Monsef et al [1]. In
this paper, we investigate ”operation-generalized closed set”, a characterization of ”operation-T1/2-space” and one-
point compactification of some ”operation-T1/2-space”. As application, we show that the Khalimsky line is a typical
example of µr,s − T1/2-spaces, where µr = int and µs = int− cl.
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2 Preliminaries

In the present article we review Some definitions and Properties from [1].

Definition 2.1 A function µ : P (X) → P (X) is said to be an operation on P (X) if int(A) ⊂ Aµ for every
A ∈ P (X), where µ(A) = Aµ.
The operation µ, µ′ and µ′′ defined by µ(V ) = int(V ), µ′(V ) = int(cl(V )) and µ′′(V ) = int(cl(int(V ))) for all
V ∈ P (X) are examples of operations on P (X). The operation µ(resp.µ′, µ′′) above is called the ”interior operation”
(resp. ”interior-closure operation”, ”interior-closure-interior operation”).

Definition 2.2 An operation µ : P (X) → P (X) is said to be regular with respect to τ ⊂ P (X) if for every
U, V ∈ τ and x ∈ U ∪ V where x ∈ X, there exists W ∈ τ with x ∈ X such that Wµ ⊂ Uµ ∩ V µ.

Definition 2.3 An operation µ : P (X) → P (X) is said to be monotone if A ⊂ B implies Aµ ⊂ Bµ. The op-
eration µ, µ′ and µ′′ above are monotone.

Definition 2.4 Let (X, τ) be a topological space and A ∈ P (X), then A is said to be µr−open if A ⊂ Aµr .
A is said to be µr−closed if X −A is µr−open.

Definition 2.5 A is said to be regular µr−open if A = Aµr . A is said to be regular µr−closed if X − A is
regular µr−open.

Definition 2.6 A point x ∈ A is in the µr,s−interior of A, written x ∈ µr,s − int(A), if there exists µr−open
U contains x such that Uµr ⊂ A. A subset A of X is µr,s-open if A = µr,s − int(A).

Definition 2.7 A point x ∈ A is in the µr,s−closure of A, written x ∈ µr,s − cl(A), if for every µr−open U
contains x, then Uµr ∩A 6= φ. A subset A of X is µr,s−closed if A = µr,s − cl(A).

Theorem 2.1 Let µr, µs : P (X)→ P (X) be two operations on P (X) and A,B ∈ P (X), then
(i) A is µr,s−closed if and only if X −A is µr,s−open.
(ii) If µr is monotone and Ai is µr−open for every i ∈ I, then ∪i∈IAi is µr−open.
(iii) If µr is monotone, then A is µr−closed if and only if for every x /∈ A there exists µr−open set U such that
U ∩A = φ.
(iv) If µr is monotone, then A is µr−open if and only if for every x ∈ A there exists µr−open set U such that U ⊂ A.
(v) If µs is regular with respect to the family of all µr−open sets in X, then µr,s−cl(A∪B) = µr,s−cl(A)∪µr,s−cl(B).

Definition 2.8 [16] Let (X, τ) be any topological space. We shall define the one-point compactification of (X, τ)
which we denote by (X∗, τ∗). Here:
(i) X∗ = X ∪ {p}, where p, is distinct from every other point in X,
(ii) τ∗ consists of the following sets:
(a) each member of the topology τ on X,
(b) the complement in X∗ of any closed and compact subset of X.

Since X is open in (X∗, τ∗) and τ∗X = τ holds, we have the following properties for a subset A of X, [22]

τ − int(A) = τ∗X − int(A) = (τ∗ − int(A)) ∩X;

τ − cl(A) = τ∗X − cl(A) = (τ∗ − cl(A)) ∩X;

((τ − int)− (τ − cl))(A) = ((τ∗ − int)− (τ∗ − cl))(A)) ∩X;

Definition 2.9 [23] A topological space (X, τ) has a (∗−property) if for every x ∈ X there exists an open neigh-
borhood U of the point x such that cl(U) is a compact subspace of (X, τ).
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3 µr,s−generalized closed sets and µr,s − T1/2−spaces

In this section we introduce µr,s−generalized closed sets (short, µr,s − g−closed sets) and µr,s − T1/2−spaces and
obtain their characterizations.

Definition 3.1 A subset A of X is said to be µr,s − g−closed set if µr,s − cl(A) ⊂ U whenever A ⊂ U and U
is µr,s−open.

Proposition 3.1 Every µr,s−−closed set is µr,s − g−closed.

Proof. Let A be a µr,s−closed subset of X contained in a µr,s−open set U , i.e., A ⊂ U , then µr,s − cl(A) ⊂ U ,
therefore A is a µr,s − g−closed set.

Here, we give a counter example to prove that the converse of the previous proposition is not true in general.

Example 3.1 Let τ = {φ, {a}, {b}, {a, c}, {a, b}, X} be a topology define on X = {a, b, c}. Let µr, µs : P (X)→ P (X)
be two operations on P (X) defined as follows: for every A ∈ P (X), Aµr = int(A) and Aµs = cl(A). Since
µr,s − cl({b, c}) = X, then {b, c} is not µr,s−closed. However, {b, c} is µr,s − g−closed in (X, τ) because X is the
only µr,s−open set containing {b, c}.

Proposition 3.2 Suppose that µs : P (X)→ P (X) is a regular operation on P (X). If A and B are two µr,s−g−closed
sets, then A ∪B is µr,s − g−closed too.

Proof. Let U be µr,s−open and A∪B ⊂ U . Since A and B are two µr,s− g−closed sets, then µr,s− cl(A) ⊂ U and
µr,s − cl(B) ⊂ U . Hence, µr,s − cl(A) ∪ µr,s − cl(B) ⊂ U . Since µs is regular, thus µr,s − cl(A ∪B) ⊂ U , i.e., A ∪B
is µr,s − g−closed.

Proposition 3.3 If a subset A of a topological space (X, τ) is µr,s − g−closed, then µr,s − cl(A) − A does not
contain any nonempty µr,s−closed set.

Proof. Let F be a µr,s−closed set contained in µr,s − cl(A) − A. Then, X − F is a µr,s−open set containing
A, it follows from the assumption that µr,s− cl(A) ⊂ X −F . Hence, F ⊂ (µr,s− cl(A)−A)∩ (X −µr,s− cl(A)) ⊂ φ
and so F = φ.

Proposition 3.4 For each x ∈ X, {x} is either µr,s−closed or its complement X − {x} is µr,s − g−closed.

Proof. Suppose that {x} is not µr,s−closed. Then, its complement X − {x} is not µr,s−open. X is the only
µr,s−open set containing X − {x} and µr,s − cl(X − {x}) ⊂ X, thus X − {x} is µr,s − g−closed.

Definition 3.2 A topological space (X, τ) is said to be µr,s−T1/2−space if every µr,s− g−closed set is µr,s−closed.

We shall illustrate the above definition by the following example.

Example 3.2 The discrete space P (X) is µr,s − T1/2−space whenever µr = int and µs = int − cl. But the topo-
logical space in Example 3.1 is not µr,s−T1/2−space, because the set {b, c} is µr,s−g−closed but it is not µr,s−closed.

Theorem 3.1 For the topological space (X, τ) and the operations µr, µs : P (X) → P (X) on P (X), the follow-
ing properties are equivalent.
(i) (X, τ) is µr,s − T1/2,
(ii) Every singleton {x} is µr,s−open or µr,s−closed.

Proof. (i → ii), Let (X, τ) be a µr,s − T1/2 − space. Suppose that, {x} is not µr,s−closed for some x ∈ X.
Then, from Proposition 3.4, we have X − {x} is a µr,s − g−closed set. Therefore, X − {x} is a µr,s−closed set and
so {x} is µr,s−open.
(ii→ i), Let A be a µr,s − g−closed set. Then, we claim that µr,s − cl(A) = A holds. Let x ∈ µr,s − cl(A). By the
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assumption {x} is µr,s−open or µr,s−closed. Hence, there are two cases.
Case 1. suppose that {x} is µr,s−open, by definition, there is µr−open set U containing x such that

Uµs ⊂ {x} (1)

Since x ∈ µr,s − cl(A), then for every µr−open set U containing x, we get

Uµs ∩A 6= φ (2)

From (1) and (2) we have Uµs = {x} and so x ∈ A.
Case 2. Suppose that {x} is µr,s−closed. Then, from Proposition 3.3 we get µr,s − cl(A) − A does not contain

{x}. And hence, x ∈ A.
Therefore, µr,s − cl(A) ⊂ A, and so A is µr,s−closed. Thus, (X, τ) is a µr,s − T1/2 − space.

In [13] Dontchev and Ganster defined δ−generalized closed sets and investigated the class of T3/4−spaces, which
is properly placed between the class of T1−spaces and T1/2−spaces.

Definition 3.3 [13] A topological space (X, τ) is T3/4 if and only if every singleton {x} is δ−open or closed.

Definition 3.4 [12] A topological space (X, τ) is almost weakly Hausdorff if and only if every singleton {x} is
δ−open or δ−closed.

In [1] it is shown that, in (X, τ), a subset A is µr,s−closed where µr = int and µs = int− cl if and only if A is
δ−closed, i.e., a subset A is µr,s−open if and only if A is δ−open.

Corollary 3.1 (i) A topological space is µr,s − T1/2 where µr = int and µs = int − cl if and only if it is al-
most weakly Hausdorff.
(ii) Every µr,s − T1/2−space where µr = int and µs = int− cl is a T3/4−space.

It was shown, in [12], that the Khalimsky line (Z,K) is almost weakly Hausdorff space, then from Corollary 3.1
we present the following lemma.

Lemma 3.1 The Khalimsky line (Z,K) is a typical example of µr,s − T1/2 where µr = int and µs = int − cl,
it is not T1.

Remark 3.1 We note that every singleton set {2n+ 1}, n ∈ Z is µr,s−open and every singleton set {2n}, n ∈ Z is
µr,s−closed in (Z,K).

Remark 3.2 The µr,s − T1/2−axioms, where µr = int and µs = int − cl, is independent of the T1−separation
axiom. In fact, the digital line (Z,K) is not T1; it is µr,s − T1/2. The real line with the cofinite topology is an
example of a T1−space, which is not µr,s − T1/2.

Lemma 3.2 A subset U is µr−open, where µr = int, if and only if U is open.

Proof. Assume that U is µr−open, where µr = int, then U ⊂ int(U), thus U = int(U) and so U is open.
Conversely, suppose U is open, hence U = int(U), therefore U ⊂ int(U), i.e., U is µr−open, where µr = int.

From Theorem 4.9 [23. 0], Corollary 3.1 and Lemma 3.2 we have the following theorem.

Theorem 3.2 If (X, τ) has (∗ − property) and τ − µr,s − T1/2, then the one point compactification (X∗, τ∗) is
τ∗ − µr,s − T1/2, where µr = int and µs = int− cl.

proof. For a point x 6= p, there exists an open neighborhood of x, say U(x), such that cl(U(x)) is a compact
subspace of (X, τ). Let S(x) = (X − cl(U(x))) ∪ {p}. Then we note that the following properties hold:
(∗∗) x ∈ U(x), U(x) ∈ τ and τ∗ − cl(U(x)) ∩ {p} = φ, especially, τ∗ − cl({x}) ∩ {p} = φ,
(∗ ∗ ∗) p ∈ S(x), S(x) ∈ τ∗ and τ∗ − cl(S(x)) ⊂ X − {x}.
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Let {x} be a singleton of X∗. We want to prove that, in (X∗, τ∗), if x 6= p, then {x} is τ∗ − µr,s−open or
τ∗ − µr,s−closed and if x = p, then {p} is τ∗ − µr,s−closed, where µr = int and µs = int − cl. Using assumption
that (X, τ) is µr,s − T1/2, from Theorem 3.1 and definition 2.6, we have three cases. We abbreviate τ − int(.) and
τ − cl(.) by int(.) and cl(.), respectively, in the proof below.

Case 1. If x 6= p and {x} is µr,s−open in (X, τ). In this case, {x} is a unique nonempty µr−open set contained
in {x}, int(cl({x})) = {x} holds in (X, τ) and also {x} is τ∗ − µr−open. By (∗∗) it is shown that

τ∗ − cl({x}) = τ∗ − cl({x}) ∩X∗

= τ∗ − cl({x}) ∩ (X ∪ {p})
= (τ∗ − cl({x}) ∩X) ∪ (τ∗ − cl({x}) ∩ {p})
= (τ∗ − cl({x}) ∩X) ∪ φ
= τ∗X − cl({x}
= τ − cl({x})
= cl({x})

and so

τ∗ − int(τ∗ − cl({x})) = τ∗ − int(cl({x}))
= τ∗ − int(cl({x})) ∩X
= τ∗X − int(cl({x}))
= τ − int(τ − cl({x}))
= int(cl({x}))
= {x}.

Thus we show that {x} is µr,s−open in (X∗, τ∗).
Case 2. If x 6= p and {x} is µr,s−closed in (X, τ). Let y ∈ X∗ − {x}. Firstly, we suppose that y 6= p, then

y ∈ X − {x} and there exists a µr−open set V such that int(cl(V )) ⊂ X − {x} and y ∈ V . Then,

τ∗ − int(τ∗ − cl(V )) = (τ∗ − int(τ∗ − cl(V ))) ∩X∗

⊂ (τ∗ − int(τ − cl(V ))) ∩X∗

⊂ ((τ∗ − int(τ − cl(V ))) ∩X) ∪ ((τ∗ − int(τ − cl(V ))) ∩ {p})
⊂ (τ∗X − int(τ − cl(V ))) ∪ ((τ − cl(V )) ∩ {p})
⊂ int(cl(V )) ∪ φ
⊂ int(cl(V ))

and so we have τ∗ − int(τ∗ − cl(V )) ⊂ X∗ − {x}.
Next, we suppose that y = p. Since x 6= p, by using (∗ ∗ ∗) for x, then there exists a subset S(x) ∈ τ∗ which is
µr−open and y = p ∈ S(x) and τ∗−int(τ∗−cl(S(x))) ⊂ X∗−{x}. Therefore, in this case, X∗−{x} is τ∗−µr,s−open
and hence {x} is τ∗ − µr,s−closed in X∗, τ∗).

Case 3. If x = p. Let y ∈ X∗ − {p}. Since y 6= p, by (∗∗) for y above, there exists a subset U(y) ∈ τ containing
y such that τ∗ − cl(U(y))) ⊂ X∗ − {p}, where U is µr−open. Therefore, we have

τ∗ − int(τ∗ − cl(U)) ⊂ τ∗ − cl(U) ⊂ X∗ − {p}

and hence X∗ − {p} is τ∗ − µr,s−open, i.e., {x} is τ∗ − µr,s−closed in X∗, τ∗).

From Theorem 3.2 and Lemma 3.1 we present the following lemma.

Lemma 3.3 The one point compactification (Z ∪ {p},K∗) of the digital line (Z,K) is one of typical examples
of µr,s − T1/2− space, where p is a point not in Z, where µr = int and µs = int− cl.

Remark 3.3 The singleton {p} and every singleton {2n}, n ∈ Z, are µr,s−closed and every singleton {2n + 1},
n ∈ Z, is µr,s−open, where µr = int and µs = int− cl.
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4 Conclusion

In short topology is a branch of mathematics, whose concepts are not only fundamental to all branches of mathe-
matics, but also in real life applications.
Image plays important role in real life. In the past the process of image analysis took place via various mathematical
models with an acceptable amount of error. Digital topology is a new accurate approach.
The results of this work help in constructing digital images in product spaces, and this in turn can help in obtaining
more precise image in fields such as medicine and geography.
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