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Abstract. In this paper, we studied the subgroup in β-α-topological group and several basic theorems are introduced. From

normal subgroups, the study naturally follows to quotient groups, which are decomposition spaces topologically. The quotient

group space of β-α-topological groups defined with the quotient topology. Also, the definition and some basic results of

isomorphism are presented.
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1 Introduction

Topological groups are objects that combine two separate structures-the structure of a topological space and the
algebraic structure of a group-linked by the requirement that the group operations are continuous with respect to
the underlying topology.

In 2013, operations defined on the family of α-open sets and αγ-open were introduced by Ibrahim [11]. In [10],
Khalaf and Ibrahim defined β-α-topological groups as a group G endowed with a topology. Also in [10], some results
was given.

In this paper our aim is to develop the notion of β-α-topological group, we establish several theorems and
properties related to normal subgroup of β-α-topological group.

2 Preliminaries

Let A be a subset of a topological space (G, τ). We denote the interior and the closure of a set A by Int(A) and Cl(A)
respectively. A subset A of a topological space (G, τ) is called α-open [12] if A ⊆ Int(Cl(Int(A))). The complement
of an α-open set is called α-closed. The intersection of all α-closed sets containing A is called the α-closure of A and is
denoted by αCl(A). By αO(G, τ), we denote the family of all α-open sets of G. An operation β : αO(G, τ)→ P (G)
[11] is a mapping satisfying the condition, V ⊆ V β for each V ∈ αO(G, τ). We call the mapping β an operation on
αO(G, τ).

A subset A of G is called an αβ-open set [11] if for each point x ∈ A, there exists an α-open set U of G containing
x such that Uβ ⊆ A. The complement of an αβ-open set is said to be αβ-closed. We denote the set of all αβ-open
sets of (G, τ) by αO(G, τ)β . The αβ-closure [11] of a subset A of G with an operation β on αO(G) is denoted by
αβCl(A) and is defined to be the intersection of all αβ-closed sets containing A. A point x ∈ G is in αClβ-closure
[11] of a set A ⊆ G, if Uβ ∩A 6= φ for each α-open set U containing x. The αClβ-closure of A is denoted by αClβ(A).
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The union of all αβ-open sets contained in A is called the αβ-interior of A and denoted by αβInt(A) [3]. An
operation β on αO(G, τ) is said to be α-open [11] if for every α-open set U of x ∈ G, there, exists an αβ-open set
V of G such that x ∈ V and V ⊆ Uβ . The operation id : αO(G, τ) → P (G) is defined by id(V ) = V for any set
V ∈ αO(G, τ) this operation is called the identity operation on αO(G, τ) [11].

An operation β : αO(G)→ P (G) is said to be α-monotone on αO(G) [3] if for all A,B ∈ αO(G), A ⊆ B implies
Aβ ⊆ Bβ . An operation β : αO(G)→ P (G) is said to be α-idempotent on αO(G) [3] if Aββ = Aβ for all A ∈ αO(G).

Definition 2.1. [4] Let S be any subset of G. An operation β from αO(G) to P (G) is called α-stable with respect
to S if β has the following two properties:

1. For any subset H of G, U ∩H = V ∩H implies that Uβ ∩H = V β ∩H for every U, V ∈ αO(G).

2. β induces an operation βS : P (S)→ P (S) such that (U ∩ S)βS = Uβ ∩ S for every U ∈ αO(G).

Definition 2.2. [2] A topological space (G, τ) is said to be αβ-regular if for each x ∈ G and for each α-open set
V in G containing x, there exists an α-open set U in G containing x such that Uβ ⊆ V .

Definition 2.3. [1] A space G is said to be α-compact if every α-open cover of G has a finite subcover

Definition 2.4. [7] A subset A of a topological space (G, τ) is said to be α-β-compact of G if for every α-open

cover {Vi : i ∈ I} of A, there exists a finite subset I0 of I such that A ⊆
⋃
{V βi : i ∈ I0}.

Definition 2.5. [9] Two subsets A and B of a topological space (G, τ) are called αβ-separated if (αβCl(A)∩B)∪
(A ∩ αβCl(B)) = φ.

Definition 2.6. [9] A subset C of a space G is said to be αβ-disconnected if there are nonempty αβ-separated
subsets A and B of G such that C = A ∪B, otherwise C is called αβ-connected.

Definition 2.7. [9] A set C is called maximal αβ-connected set if it is αβ-connected and if C ⊆ D ⊆ G where D
is αβ-connected, then C = D. A maximal αβ-connected subset C of a space G is called an αβ-component of G.

Definition 2.8. [5] A topological space (G, τ) with an operation β on αO(G) is said to be:

1. An α-β-T1 space if for any two distinct points x, y ∈ G, there exist two α-open sets U and V containing x and
y, respectively, such that y /∈ Uβ and x /∈ V β.

2. An α-β-T2 space if for any two distinct points x, y ∈ G, there exist two α-open sets U and V containing x and
y, respectively, such that Uβ ∩ V β = φ.

Definition 2.9. [6] A space G is said to be weakly αβ-regular space, if for any αβ-closed set A and x /∈ A, there
exist αβ-open sets U, V such that x ∈ U , A ⊆ V and U ∩ V = φ.

Definition 2.10. A function f : (G1, τ)→ (G, σ) is said to be:

1. α-β-continuous [8] if for each point x in G and for each α-open set V of G containing f(x), there exists an
α-open set U of G1 containing x such that f(U) ⊆ V β.

2. α-(β1, β)-continuous [8] if for each x ∈ G1 and each α-open set V containing f(x), there exists an α-open set
U such that x ∈ U and f(Uβ1) ⊆ V β.

3. α(β1,β)-continuous [11] if for each x of G1 and each αβ-open set V containing f(x), there exists an αβ1-open
set U such that x ∈ U and f(U) ⊆ V .

4. α(β1,β)-closed [11] if for any αβ1-closed set A of (G1, σ), f(A) is αβ-closed in (G, τ).

5. α(β1,β)-open [8] if for any αβ1-open set A of (G1, σ), f(A) is αβ-open in (G, τ).

6. α-(β1, β)-homeomorphic [8] if f is bijective, α-(β1, β)-continuous and f−1 is α-(β, β1)-continuous.

Throughout this paper, (G, ∗, τ) and (G1, ∗, σ), or simply G and G1, will denote groups (G, ∗) and (G1, ∗)
endowed with a topology τ and σ. The identity element of G is denoted by e. The operations β : αO(G) → P (G)
and β1 : αO(G1)→ P (G1) are always operations defined on αO(G) and αO(G1), respectively.

The operation ∗ : G×G→ G, (x, y)→ x ∗ y is called the multiplication mapping and sometimes denoted by m,
and the inverse operation G→ G, x→ x−1 is denoted by i.
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Definition 2.11. [10] Let (G, ∗) be a group and τ be a topology on G. Then, the multiplication map is β-α-
continuous in the first variable if and only if given a, b ∈ G and O ∈ αO(G, τ) such that a ∗ b ∈ O, then there is
U ∈ αO(G, τ) with a ∈ U and Uβ ∗ b ⊆ Oβ. Similarly, multiplication is β-α-continuous in the second variable if and
only if given a, b ∈ G and O ∈ αO(G, τ) such that a∗ b ∈ O, then there is V ∈ αO(G, τ) with b ∈ V and a∗V β ⊆ Oβ.

Definition 2.12. [10] Let (G, ∗) be a group and τ be a topology on G.

1. The inversion map is β-α-continuous if and only if given a ∈ G and O ∈ αO(G, τ) such that a−1 ∈ O, then

there is U ∈ αO(G, τ) with a ∈ U and Uβ
−1 ⊆ Oβ, where Uβ

−1
= {x−1 : x ∈ Uβ}.

2. The multiplication is jointly β-α-continuous in both variables if and only if given a, b ∈ G and O ∈ αO(G, τ)
such that a ∗ b ∈ O, then there exist U, V ∈ αO(G, τ) with a ∈ U , b ∈ V and Uβ ∗ V β ⊆ Oβ.

3. A triple (G, ∗, τ) is called a β-α-topological group if and only if inversion is β-α-continuous and multiplication
is jointly β-α-continuous in both variables.

Theorem 2.13. [10] Let (G, ∗) be a group and τ be a topology on G. Then inversion is β-α-continuous and
multiplication is jointly β-α-continuous in both variables if and only if for any elements a, b of G and α-open set O

with a ∗ b−1 ∈ O, there exist α-open sets U and V containing a and b respectively such that Uβ ∗ V β−1 ⊆ Oβ.

Corollary 2.14. [10] Suppose that the multiplication map is β-α-continuous in each variable. Let β be α-open,
α-monotone and α-idempotent. If S is a semigroup, then αClβ(S) is also semigroup.

Theorem 2.15. [10] Let (G, ∗) be a group, τ be a topology on G and (G, τ) be αβ-regular. If the multiplication
map is β-α-continuous in the second variable. If S is a semigroup, then αβInt(S) is also semigroup.

Theorem 2.16. [10] Let A and B be nonempty subsets of a β-α-topological group (G, ∗, τ) and β be identity. If
A and B are αβ-connected, then A ∗B is αβ-connected.

Theorem 2.17. [10] Let (G, ∗) be a group and τ be a topology on G. If the multiplication map is β-α-continuous
in each variable. If A is arbitrary and B is αβ-open, then A ∗B and B ∗A are α-open.

Theorem 2.18. [10] Let (G, ∗, τ) be a β-α-topological group. If A is αβ-closed and B is α-compact subsets of G,
then A ∗B and B ∗A are α-closed.

Theorem 2.19. [10] Let (G, ∗, τ) be a β-α-topological group, (G, τ) be αβ-regular and β be α-monotone, α-left
and αβ-left. Then, G is α-β-T2 if and only if {e} is αβ-closed.

Theorem 2.20. [10] Let (G, ∗) be a group, τ be a topology on G and (G, τ) be αβ-regular. If the multiplication
map is β-α-continuous in each variable. If S is a normal set algebraically, then αβInt(S) and αβCl(S) are also
normals.

3 Quotient Group in β-α-topological Group

Recalling the following well known definition.

Definition 3.1. A non empty subset S of the group G is a subgroup of G if x ∗ S = S = S ∗ x for every x ∈ S.
Equivalently, if for every x, y ∈ S, x ∗ y−1 ∈ S.
A subgroup S is a normal subgroup of G if x ∗ s ∗ x−1 ∈ S for each s ∈ S and each x ∈ X.

It is obvious that the group G and {e} both are normal subgroups of G.

Theorem 3.2. Let S be an α-open subgroup of a β-α-topological group (G, ∗, τ) and β be an α-monotone operation
on αO(G) which is α-stable with respect to S. Then S is a βS-α-topological group.

Proof. We have to show that for each x, y ∈ S and each α-open subset W in S with x∗y−1 ∈W , there exist α-open
subsets U , V containing x and y respectively such that UβS ∗(V βS )−1 ⊆W βS . Since S is α-open in G, so there exists
an α-open set L in G such that W = L∩S and since G is a β-α-topological group, then there are α-open sets A and
B containing x and y respectively such that Aβ ∗ (Bβ)−1 ⊆ (L∩S)β . The sets U = A∩S and V = B∩S are both in

α-open in S. Also, UβS ∗(V βS )−1 = (A∩S)βS ∗((B ∩ S)βS )−1 = (Aβ∩S)∗(Bβ ∩ S)
−1 ⊆ Aβ∗(Bβ)−1 ⊆ (L∩S)β ⊆ Lβ

implies that UβS ∗ (V βS )−1 = (UβS ∗ (V βS )−1) ∩ S ⊆ Lβ ∩ S = (L ∩ S)βS = W βS . Hence, by Theorem 2.13, we
obtain that S is a βS-α-topological group.
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Theorem 3.3. Let (G, ∗) be a group and τ be a topology on G. If the multiplication map is β-α-continuous in
the second variable, then the following statements are true:

1. If H is an αβ-open subgroup of G, then it is α-closed in G.

2. If a subgroup H of G contains a non empty αβ-open set, then H is α-open in G.

Proof.

1. Let H be an αβ-open subgroup of G. Then, by Theorem 2.17 every left coset x ∗ H is α-open. Thus,
Y =

⋃
x∈G\H x ∗H is also α-open as a union of α-open sets. Then H = G \ Y and so H is α-closed.

2. Let B be a non empty αβ-open subset of G with B ⊆ H . Then, by Theorem 2.17, we have h ∗ B is α-open
in G for any h ∈ H. Since H is a subgroup of G, so h ∗ B ⊆ H for all h ∈ H. Therefore, H =

⋃
h∈H h ∗ B is

also α-open as a union of α-open sets.

Theorem 3.4. Let (G, ∗, τ) be a β-α-topological group and S a subgroup of G. If β is α-open, α-monotone and
α-idempotent, then:

1. The set αClβ(S) = αβCl(S) is a subgroup of G.

2. If (G, τ) is αβ-regular, then the set S = αβCl(S) = αClβ(S) if and only if there exists an αβ-open set Q such
that Q ∩ S = Q ∩ αβCl(S) 6= φ.

Proof.

1. Since S is a semigroup, by Corollary 2.14, αClβ(S) is a semigroup. Since β is α-open and e ∈ S, so e ∈
αClβ(S) = αβCl(S). Let a ∈ αβCl(S) and O ∈ αO(G, τ)β such that a−1 ∈ O, since f is α-(β, β)-continuous,
then O−1 ∈ αO(G, τ)β and a ∈ O−1. Thus there is b ∈ S ∩ O−1. Then b−1 ∈ S ∩ O and a−1 ∈ αβCl(S) =
αClβ(S). Therefore αClβ(S) = αβCl(S) is a subgroup of G.

2. If S = αβCl(S), then G is an αβ-open set and G ∩ S = G ∩ αβCl(S) 6= φ.

Conversely, let x ∈ αβCl(S) and c ∈ S∩Q, then x∗Q∗c−1 ∈ αO(G, τ) = αO(G, τ)β such that x = x∗c∗c−1 ∈
x∗Q∗c−1. Thus there is s ∈ S∩x∗Q∗c−1 which implies there is q ∈ Q such that s = x∗q∗c−1. Since x∗q∗c−1
and c are elements of S, x∗q = x∗q ∗c−1 ∗c ∈ S. Hence, q ∈ x−1 ∗S ⊆ αβCl(S) and q ∈ Q∩αβCl(S) = Q∩S.
Thus q ∈ S. Since q−1 and x ∗ q are elements of S, so x = (x ∗ q) ∗ q−1 ∈ S. Therefore αβCl(S) ⊆ S and
S = αβCl(S) = αClβ(S).

Theorem 3.5. Let (G, ∗, τ) be a β-α-topological group and S a subgroup of G. If (G, τ) is αβ-regular and
αβInt(S) 6= φ, then αβInt(S) = S = αβCl(S).

Proof. Let x ∈ αβInt(S), then there is an αβ-open set O containing x such that O ⊆ S. Thus x−1 ∈ O−1 ⊆ S
and x−1 ∈ αβInt(S). Since αβInt(S) is a semigroup by Theorem 2.15, e = x ∗ x−1 ∈ αβInt(S).

Let x ∈ S, then x = x ∗ e ∈ x ∗ αβInt(S) ⊆ S. Therefore x ∈ αβInt(S) and S = αβInt(S).
Let x ∈ αβCl(S), then S = αβInt(S) and e ∈ S imply x ∗ e ∈ x ∗S ∈ αO(G, τ) = αO(G, τ)β such that x ∈ x ∗S.

Since S ∩ x ∗ S 6= φ, there is an s1 ∈ S ∩ x ∗ S such that s1 = x ∗ s2 for some s2 ∈ S. Then x = s1 ∗ s−12 ∈ S. Hence
αβCl(S) ⊆ S and S = αβCl(S). Therefore, αβInt(S) = S = αβCl(S).

Theorem 3.6. Let (G, ∗, τ) be a β-α-topological group and β be identity. If Ge is αβ-component subset of G such
that e ∈ Ge, then Ge is αβ-closed normal subgroup.

Proof. Since Ge is αβ-closed as it is an αβ-component. Let a ∈ Ge, then by Theorem 2.16, a∗Ge is αβ-connected.
Thus there is an αβ-component C of G such that a∗Ge ⊆ C. If C 6= Ge, then C and Ge are separated, but a ∈ C∩Ge.
Therefore C = Ge and a ∗Ge ⊆ Ge. Let b ∈ Ge, since a−1 ∗Ge is αβ-connected and e ∈ a−1 ∗Ge, so a−1 ∗Ge ⊆ Ge.
Thus a−1 ∗ b ∈ Ge and b ∈ a ∗ Ge. Hence Ge ⊆ a ∗ Ge and Ge = a ∗ Ge. Similarly Ge ∗ a = Ge. Therefore Ge is a
subgroup.

Let x ∈ G, then x ∗ Ge ∗ x−1 is αβ-connected and e ∈ x ∗ Ge ∗ x−1 implies x ∗ Ge ∗ x−1 ⊆ Ge. Similarly
x−1 ∗Ge ∗ x ⊆ Ge, thus Ge ⊆ x ∗Ge ∗ x−1. Therefore Ge = x ∗Ge ∗ x−1 and Ge is normal.

Theorem 3.7. Let (G, ∗, τ) be a β-α-topological group. If A is an αβ-closed subset of G, then the normalizer of
A is αβ-closed subgroups of G.



Normal Subgroups and Quotient Groups in β-α-topological Group 19

Proof. Let N = {x : x ∗ A = A ∗ x} denote the normalizer of A and let y ∈ N , then y ∗ A = A ∗ y implies
y−1 ∗A = A ∗ y−1, thus y−1 ∈ N . If x, y ∈ N , then

(x ∗ y−1) ∗ A = x ∗ (y−1 ∗ A) = x ∗ (A ∗ y−1) = (x ∗ A) ∗ y−1 = A ∗ (x ∗ y−1). Hence x ∗ y−1 ∈ N and N is a
subgroup.

Let r ∈ αClβ(N) and let r ∗ a ∈ r ∗ A for a ∈ A. Let O ∈ αO(G, τ) such that r ∗ a ∗ r−1 ∈ O, then there are

α-open sets U and V such that r ∈ U , a ∈ V and Uβ ∗V β ∗Uβ−1 ⊆ Oβ . There is n ∈ Uβ ∩N , thus n ∗a ∗n−1 ∈ Oβ .
Since n ∗ A = A ∗ n, so n ∗ a ∗ n−1 ∈ A ∩ Oβ . Thus r ∗ a ∗ r−1 ∈ αClβ(A) = A, hence r ∗ a ∗ r−1 ∈ A. Then
(r ∗ a ∗ r−1) ∗ r = r ∗ a ∈ A ∗ r and r ∗A ⊆ A ∗ r. Similarly A ∗ r ⊆ r ∗A and so r ∗A = A ∗ r. Hence r ∈ N and N
is αβ-closed.

Theorem 3.8. Let (G, ∗, τ) be a β-α-topological group and A be a subset of G. If G is α-β-T2, then the centralizer
of A is αβ-closed subgroups of G.

Proof. Let C = {x : x ∗ a = a ∗ x for all a ∈ A} denote the centralizer of A. Let y ∈ C, then y ∗ a = a ∗ y for
every a ∈ A. Hence a ∗ y−1 = y−1 ∗ a for every a ∈ A, thus y−1 ∈ C. Let x, y ∈ C and a ∈ A, then

(x ∗ y−1) ∗ a = x ∗ (y−1 ∗ a) = x ∗ (a ∗ y−1) = (x ∗ a) ∗ y−1 = a ∗ (x ∗ y−1). Thus x ∗ y−1 ∈ C and consequently C
is a subgroup.

Let p ∈ αClβ(C). Let a ∈ A and O ∈ αO(G, τ) such that p ∗ a ∗ p−1 ∈ O, then there are α-open sets U and V
with p ∈ U , a ∈ V and Uβ ∗ V β ∗ (Uβ)−1 ⊆ Oβ . Since there is x ∈ Uβ ∩ C, x ∗ a ∗ x−1 ∈ Oβ , but x ∗ a = a ∗ x,
thus a = x ∗ a ∗ x−1 ∈ Oβ . Therefore for every O ∈ αO(G, τ) such that p ∗ a ∗ p−1 ∈ O, then a ∈ Oβ . Suppose
p ∗ a ∗ p−1 6= a, since G is α-β-T2, then there are α-open sets K and L such that a ∈ K, p ∗ a ∗ p−1 ∈ L and
Kβ ∩Lβ = φ, but p ∗ a ∗ p−1 ∈ L implies a ∈ Lβ . This is a contradiction and thus, a = p ∗ a ∗ p−1 and p ∈ C. Hence
C is αβ-closed.

Theorem 3.9. Let (G, ∗, τ) be a β-α-topological group and S a commutative subgroup of G. Suppose that β is
α-open, α-monotone and α-idempotent. If G is α-β-T2, then αClβ(S) = αβCl(S) is a commutative subgroup of G.

Proof. By Theorem 3.4 (1), αClβ(S) = αβCl(S) is a subgroup.
Let a ∈ S and p ∈ αClβ(S). Let O ∈ αO(G, τ) such that p ∗ a ∗ p−1 ∈ O, then there are α-open sets U and V

such that p ∈ U , a ∈ V and Uβ ∗ V β ∗ Uβ−1 ⊆ Oβ . Since there is an x ∈ Uβ ∩ S, x ∗ a ∗ x−1 ∈ Oβ , but x ∗ a ∈ S
implies x ∗ a = a ∗ x, thus a = x ∗ a ∗ x−1 ∈ Oβ . Therefore, if p ∗ a ∗ p−1 ∈ Oβ and O is an α-open set containing
p ∗ a ∗ p−1, then a ∈ Oβ . Since G is α-β-T2, this implies p ∗ a ∗ p−1 = a, thus p ∗ a ∗ p−1 = a and p ∗ a = a ∗ p.

Let p, x ∈ αClβ(S) and suppose p∗x 6= x∗p. Then G being α-β-T2 implies there are α-open sets O1 and O2 such

that p ∗ x ∈ O1, x ∗ p ∈ O2 and Oβ1 ∩O
β
2 = φ. Since p ∗ x ∈ O1, there exist α-open sets U1 and V1 such that p ∈ U1,

x ∈ V1 and Uβ1 ∗ V
β
1 ⊆ Oβ1 . Similarly there are α-open sets U2 and V2 such that p ∈ U2, x ∈ V2 and V β2 ∗ U

β
2 ⊆ Oβ2 .

Let U = U1 ∩U2 and V = V1 ∩V2, then U and V are α-open, p ∈ U , x ∈ V , Uβ ∗V β ⊆ Oβ1 and V β ∗Uβ ⊆ Oβ2 . Since

p, x ∈ αClβ(S), there are elements a and b of S such that a ∈ Uβ ∩ S and b ∈ V β ∩ S. Thus a ∗ b ∈ Uβ ∗ V β ⊆ Oβ1
and b ∗ a ∈ V β ∗ Uβ ⊆ Oβ2 , but a ∗ b = b ∗ a implies a ∗ b ∈ Oβ1 ∩ O

β
2 . Since Oβ1 and Oβ2 were defined to be disjoint,

the supposition is incorrect. Therefore p ∗ x = x ∗ p and αClβ(S) = αβCl(S) is commutative.

Theorem 3.10. Let (G, ∗, τ) be a β-α-topological group and β be α-open, α-monotone and α-idempotent. If S a
subgroup of G, K is a normal subgroup of S and G = αClβ(S), then αClβ(K) = αβCl(K) is a normal subgroup of
G.

Proof. Since K is a subgroup of S, so K is a subgroup of G, thus by Theorem 3.4 (1), αClβ(K) = αβCl(K) is a
subgroup of G.

Let x ∈ G and x ∗ y ∗ x−1 ∈ x ∗αClβ(K) ∗ x−1 where y ∈ αClβ(K). Let O ∈ αO(G, τ) such that x ∗ y ∗ x−1 ∈ O,

then there are α-open sets U and V with x ∈ U , y ∈ V and Uβ ∗ V β ∗ Uβ−1 ⊆ Oβ . Since G = αClβ(S), there
is s ∈ S ∩ Uβ and y ∈ αClβ(K) implies there is k ∈ V β ∩ K. Thus s ∗ k ∗ s−1 ∈ Oβ . Since K is normal with
respect to S, s ∗ k ∗ s−1 ∈ Oβ ∩ K, hence x ∗ y ∗ x−1 ∈ αClβ(K) and x ∗ αClβ(K) ∗ x−1 ⊆ αClβ(K). Similarly
x−1 ∗ αClβ(K) ∗ x ⊆ αClβ(K) and αClβ(K) ⊆ x ∗ αClβ(K) ∗ x−1. Therefore αClβ(K) = x ∗ αClβ(K) ∗ x−1 for all
x ∈ G. Hence, K is normal in G.

Definition 3.11. Let S be a normal subgroup of a group G. Consider the family G/S = {g∗S : g ∈ G}, consisting
of all left cosets g ∗S of S in G. We define the binary operation ∗ on G/S by the formula g ∗S ∗ p ∗S = g ∗ p ∗S for
all g, p ∈ G. The operation ∗ makes G/S a group whose neutral element is S and where the inverse of an element
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g ∗ S is g−1 ∗ S.

Consider the mapping π : G → G/S defined by π(g) = g ∗ S, for each g ∈ G, then this mapping is a group
homomorphism and for each g ∈ G, we have π−1(π(g)) = g ∗ S.

Let (G, ∗, τ) be a β-α-topological group. Denote by τ
′

the topology of G/S and it is called the quotient topology of
the quotient group G/S of the group G. In the set G/S, we define a family τ

′
and αO(G/S, τ

′
) of subsets as follows:

τ
′

= {O ⊆ G/S : π−1(O) ∈ τ} and
αO(G/S, τ

′
) = {O ⊆ G/S : π−1(O) ∈ αO(G, τ)}.

From the operation β which is defined on αO(G, τ), we define the operation βG/S : αO(G/S, τ
′
) → P (G/S) as

follows:
(π(U))βG/S = π(Uβ) for every U ∈ αO(G, τ) and π(U) ∈ αO(G/S, τ

′
).

Example 3.12. Consider the β-α-topological group (Z12,+12, τ), where τ = {φ,Z12, {0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}}
and for each A ∈ αO(Z12, τ), we define β on αO(Z12, τ) by Aβ = Z12. Let S = {0, 3, 6, 9}, so Z12/S =
{S, 1 +12 S, 2 +12 S}. Then, αO(Z12/S, τ

′
) = {φ,Z12/S}.

Theorem 3.13. Let (G, ∗, τ) be a β-α-topological group and let S be a normal subgroup of G. If (G, τ) is αβ-

regular, then (G/S, ∗, τ ′) is a βG/S-α-topological group.

Proof. First we show that π(U) ∈ αO(G/S, τ
′
) for every U ∈ αO(G, τ). By the definition of the topology

αO(G/S, τ
′
), we have that π(U) ∈ αO(G/S, τ

′
) when π−1(π(U)) ∈ αO(G, τ). For every g ∈ G, we have π−1(π(g)) =

g ∗ S from this it follows that π−1(π(U)) =
⋃
g∈U g ∗ S = U ∗ S. By Theorem 2.17, we have U ∗ S ∈ αO(G, τ)

whenever U ∈ αO(G, τ) = αO(G, τ)β because (G, τ) is αβ-regular. Hence, we have π−1(π(U)) ∈ αO(G, τ) and so

π(U) ∈ αO(G/S, τ
′
), for every U ∈ αO(G, τ).

Next we show that the multiplication mapping (a, b) → a ∗ b is jointly βG/S-α-continuous in both variables

(G/S, τ
′
)× (G/S, τ

′
)→ (G/S, τ

′
).

Let O ∈ αO(G/S, τ
′
) and let a, b ∈ G/S such that a ∗ b ∈ O. Let x, y ∈ G satisfy a = π(x) and b = π(y).

Since π is homomorphism, so π(x ∗ y) = π(x) ∗ π(y) = a ∗ b ∈ O and thus x ∗ y ∈ π−1(O). Since O ∈ αO(G/S, τ
′
),

we have π−1(O) ∈ αO(G, τ). Since (G, ∗, τ) is a β-α-topological group and x ∗ y ∈ π−1(O) ∈ αO(G, τ), there exist
U, V ∈ αO(G, τ) such that x ∈ U , y ∈ V and Uβ ∗ V β ⊆ (π−1(O))β . Again since π is a homomorphism, we have
π(Uβ ∗ V β) = π(Uβ) ∗ π(V β). Since Uβ ∗ V β ⊆ (π−1(O))β , we have π(Uβ ∗ V β) ⊆ π((π−1(O))β) and therefore
π(Uβ) ∗ π(V β) ⊆ π((π−1(O))β) implies (π(U))βG/S ∗ (π(V ))βG/S ⊆ (π(π−1(O)))βG/S = OβG/S . Hence, we have that
π(U) ∈ αO(G/S, τ

′
) and π(V ) ∈ αO(G/S, τ

′
). Since a = π(x) ∈ π(U) and b = π(y) ∈ π(V ), we have shown that the

multiplication mapping is jointly βG/S-α-continuous in both variables.

Now, we have to show that the inversion mapping a→ a−1 is βG/S-α-continuous (G/S, τ
′
)→ (G/S, τ

′
).

Let a ∈ G/S and let O ∈ αO(G/S, τ
′
) such that a−1 ∈ O. let x ∈ G such that a−1 = π(x−1) and a = π(x).

Then π(x−1) = a−1 ∈ O and thus x−1 ∈ π−1(O). Since π−1(O) ∈ αO(G, τ), there is an α-open set U such that
x ∈ U and (Uβ)−1 ⊆ (π−1(O))β . Now π(x) = a ∈ π(U), and π(U) ∈ αO(G/S, τ

′
). Since π is a homomorphism,

so π(Uβ
−1

) ⊆ π(π−1(O))β implies π(Uβ)−1 ⊆ π(π−1(O))β and hence (π(U))βG/S )−1 ⊆ (π(π−1(O)))βG/S = OβG/S .
Therefore the inversion is βG/S-α-continuous and hence (G/S, ∗, τ ′) is a βG/S-α-topological group.

Example 3.14. Let (Z6,+6) be a group, τ be the discrete topology on Z6 and S = {0, 3}, then
αO(Z6/S, τ

′
) = {φ,Z6/S, {S}, {1 +6 S}, {2 +6 S}, {S, 1 +6 S}, {S, 2 +6 S}, {1 +6 S, 2 +6 S}}.

Now, for each A ∈ αO(Z6, τ), we define β on αO(Z6, τ) by

Aβ =

{
A if A is singleton set,
Z6 otherwise.

Then, {S}βZ6/S = π({0, 3})βZ6/S = π({0, 3}β) = π(Z6) = Z6/S,
{1 +6 S}βZ6/S = π({1, 4})βZ6/S = π({1, 4}β) = π(Z6) = Z6/S,
{2 +6 S}βZ6/S = π({2, 5})βZ6/S = π({2, 5}β) = π(Z6) = Z6/S,
{S, 1 +6 S}βZ6/S = π({0, 1, 3, 4})βZ6/S = π({0, 1, 3, 4}β) = π(Z6) = Z6/S,
{S, 2 +6 S}βZ6/S = π({0, 2, 3, 5})βZ6/S = π({0, 2, 3, 5}β) = π(Z6) = Z6/S and
{1 +6 S, 2 +6 S}βZ6/S = π({1, 2, 4, 5})βZ6/S = π({1, 2, 4, 5}β) = π(Z6) = Z6/S.
Therefore, (Z6,+6, τ) is β-α-topological group and (Z6/S,+6, τ

′
) is a βZ6/S-α-topological group.
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Theorem 3.15. If (G, τ) is αβ-regular and (G/S, τ
′
) is αβG/S -regular, then the natural homomorphism π from the

β-α-topological group G to its quotient group G/S is an α-βG/S-continuous, α-(β, βG/S)-continuous and α(β,βG/S)-
continuous mapping.

Proof. Since (G, τ) is αβ-regular and (G/S, τ
′
) is αβG/S -regular, then αO(G, τ) = αO(G, τ)β and αO(G/S, τ

′
) =

αO(G/S, τ
′
)βG/S .

Let O ∈ αO(G/S, τ
′
)βG/S , then π−1(O) is αβ-open in G by Definition 3.11, therefore π is α-βG/S-continuous,

α-(β, βG/S)-continuous and α(β,βG/S)-continuous.

Theorem 3.16. If (G/S, τ
′
) is αβG/S -regular, then the natural homomorphism π from a β-α-topological group G

to its quotient group G/S is an α(β,βG/S)-open mapping.

Proof. Let U ∈ αO(G, τ)β , then U ∈ αO(G, τ). Since in the beginning of the proof of Theorem 3.13, we showed

that π(U) ∈ αO(G/S, τ
′
) whenever U ∈ αO(G, τ). As a consequence, π is an α(β,βG/S)-open mapping.

Theorem 3.17. Let S be an α-compact normal subgroup of a β-α-topological group G. If (G, τ) is αβ-regular and

(G/S, τ
′
) is αβG/S -regular, then the natural homomorphism π : G→ G/S is an α(β,βG/S)-closed mapping.

Proof. Let F be an αβ-closed subset of G. By Theorem 2.18, the set F ∗ S is α-closed in G and hence the set
G \ (F ∗ S) is α-open. Since π is α(β,βG/S)-open mapping, the subset π(G \ (F ∗ S)) of G/S is αβG/S -open. We have

that F ∗S = π−1(π(F )) and hence that G \ (F ∗S) = π−1(G/S \π(F )). It follows that π(G \ (F ∗S)) = G/S \π(F ).
By the foregoing, the set G/S \ π(F ) is αβG/S -open in G/S, hence π(F ) is αβG/S -closed in G/S.

Theorem 3.18. Let S be a normal subgroup of a β-α-topological group G and β be α-monotone, α-left and αβ-left.

Suppose (G, τ) is αβ-regular and (G/S, τ
′
) is αβG/S -regular. Then, G/S is α-βG/S-T1 if and only if S is αβ-closed.

Proof. Let G/S be α-βG/S-T1, then the subset {S} of G/S is αβG/S -closed, from this it follows by α-(β, βG/S)-

continuity of the mapping π, that the subset S = π−1({S}) of G is αβ-closed.
Conversely, assume S is αβ-closed in G, then G \ S is αβ-open and it follows from α(β,βG/S)-openness of the

mapping π that the subset π(G \ S) of G/S is αβG/S -open, since G/S \ {S} = π(G \ S), then the subset {S} of G/S
is αβG/S -closed and by Theorem 2.19, G/S is α-βG/S-T2. Therefore G/S is α-βG/S-T1.

Theorem 3.19. Let S be a normal subgroup of a β-α-topological group G. Suppose (G, τ) is αβ-regular and

(G/S, τ
′
) is αβG/S -regular.

1. If G is αβ-connected, then G/S is αβG/S -connected.

2. If G is α-compact, then G/S is α-βG/S-compact.

Proof.

1. Assume G is αβ-connected, then π being α(β,βGS )-continuous implies π(G) = G/S is αβG/S -connected.

2. Since π is α-βG/S-continuous and onto and G is α-compact, then G/S is α-βG/S-compact.

Theorem 3.20. Let (G, ∗, τ) be a β-α-topological group, (G, τ) be αβ-regular and (G/S, τ
′
) be αβGS -regular. If β

is α-open, α-monotone, α-idempotent α-left and αβ-left, then (G/αClβ({e}), ∗, τ ′) is an α-βGS -T2 β
G
S -α-topological

group.

Proof. Since {e} is a normal subgroup, by Theorems 2.20 and 3.4 (1) , αClβ({e}) is a normal subgroup, thus
by Theorem 3.13, G/αClβ({e}) is a βG/S-α-topological group. Since αClβ({e}) is αβ-closed, by Theorem 3.18,
G/αClβ({e}) is α-βG/S-T1. Therefore by Theorem 2.19, G/αClβ({e}) is α-βG/S-T2.

Proposition 3.1. Let (G, ∗, τ) be a β-α-topological group, (G, τ) be αβ-regular, (G/S, τ
′
) be αβG/S -regular, S be a

normal subgroup of G, π be the natural mapping of G onto G/S and let UandV be an α-open subsets of G such that
e ∈ U , e ∈ V and V −1 ∗ V ⊆ U . Then αβG/SCl(π(V )) ⊆ π(U).
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Proof. Take any x ∈ G such that π(x) ∈ αβG/SCl(π(V )). Since V ∗ x is an α-open set containing x and the
mapping π is α(β,βG/S)-open, then π(V ∗ x) is an αβG/S -open set containing π(x). Therefore, π(V ∗ x) ∩ π(V ) 6= φ.
It follows that, for some a ∈ V and b ∈ V , we have π(a ∗ x) = π(b), that is, a ∗ x = b ∗ h, for some h ∈ S. Hence,
x = (a−1 ∗ b) ∗ h ∈ U ∗ S, since a−1 ∗ b ∈ V −1 ∗ V ⊆ U . Therefore, π(x) ∈ π(U ∗ S) = π(U).

Corollary 3.21. Let (G, ∗, τ) be a β-α-topological group, (G/S, τ
′
) be αβGS -regular, S be a normal subgroup of G

and π be the natural mapping of G onto G/S. If f : G/S → G1 is a mapping such that the composition f ◦ π is
α-(β, γ)-continuous and γ is an α-open operation on αO(G1), then f is α-(βG/S , γ)-continuous.

Proof. Let W be an αγ-open set in G1. Since f ◦ π is α-(β, γ)-continuous, then (f ◦ π)−1(W ) = π−1(f−1(W )) is
αβ-open in G. Since by Theorem 3.16, π is an α(β,βGS )-open mapping, then π(π−1(f−1(W ))) = f−1(W ) is αβG/S -open

in G/S. Therefore, f is α-(βG/S , γ)-continuous.

Definition 3.22. Let G be β-α-topological group and G1 be γ-α-topological group. If there exists a homomorphism
function f : G → G1 such that f is α-(β, γ)-homeomorphism, then G is said to be α-(β, γ)-isomorphic to G1, and
the function f is said to be α-(β, γ)-isomorphism.

Theorem 3.23. (The fundamental homomorphism theorem)
Let (G, ∗, τ) be a β-α-topological group and (G, τ) be αβ-regular. If θ is an α-(β, γ)-continuous homomorphism

of G onto G1, γ is an α-open operation on αO(G1) and (G/θ−1(e
′
), τ

′
) is αβ

G/θ−1(e
′
)
-regular, then G/θ−1(e

′
) is

α-(βG/θ−1(e′ ), γ)-iseomorphic to G1 if and only if θ is α(β,γ)-open, where e
′

is identity element of G1.

Proof. Since θ is a homomorphism, so obviously θ−1(e
′
) is a normal subgroup of G. Let π be the natural map

from G to G/θ−1(e
′
). Assume θ is α(β,γ)-open. Now, we have to show that G/θ−1(e

′
) and G1 are α-(βG/θ−1(e′ ), γ)-

iseomorphic. Define f : G/θ−1(e
′
)→ G1 as f ◦ π = θ, thus

Let y ∈ G1. Since θ is onto, there is an x ∈ G such that θ(x) = y. Let x = π(x) for x ∈ G/θ−1(e
′
), then

y = θπ−1(x) = f(x). Thus f is onto.
To show that f is one to one, suppose that f(a ∗ θ−1(e

′
)) = f(b ∗ θ−1(e

′
)), where π(a) = a ∗ θ−1(e

′
) and

π(b) = b ∗ θ−1(e
′
) for a, b ∈ G. Then f(π(a)) = f(π(b)) implies θ(a) = θ(b), so

e
′

= θ−1(a) ∗ θ(b) = θ(a−1) ∗ θ(b) = θ(a−1 ∗ b), used θ is homomorphism.
Thus, a−1 ∗ b ∈ θ−1(e

′
) implies that a ∗ θ−1(e

′
) = b ∗ θ−1(e

′
). Thus f is one to one.

Now, f [(a∗θ−1(e
′
))∗ (b∗θ−1(e

′
))] = f [(a∗b)∗θ−1(e

′
)] = f(π(a∗b)) = θ(a∗b) = θ(a)∗θ(b) = f(π(a))∗f(π(b)) =

f(a ∗ θ−1(e
′
)) ∗ f(b ∗ θ−1(e

′
)). Thus f is homomorphism.

Let O be an αγ-open set in G1. Since θ is α-(β, γ)-continuous and π is α(β,β
G/θ−1(e

′
)
)-open, then πθ−1(O) =

f−1(O) is αβ
G/θ−1(e

′
)
-open in G/θ−1(e

′
). Thus f is α-(βG/θ−1(e′ ), γ)-continuous.

Let O be an αβ
G/θ−1(e

′
)
-open set in G/θ−1(e

′
). Since π is α-(β, βG

θ−1(e′ )
)-continuous and O is αβ

G/θ−1(e
′
)
-open,

θπ−1(O) = f(O) is αγ-open in G1. Thus f−1 is α-(γ, βG/θ−1(e′ ))-continuous. Therefore f is an α-(βG/θ−1(e′ ), γ)-
iseomorphism.

Conversely, assume f is an α-(βG/θ−1(e′ ), γ)-iseomorphism such that θ = fπ. Let O be an αβ-open set in G, since

π is α-(β, βG/θ−1(e′ ))-open and f−1 is α-(γ, βG/θ−1(e′ ))-continuous, then fπ(O) = θ(O) is αγ-open in G1. Hence θ is
α(β,γ)-open.

Corollary 3.24. Let f : (G, ∗, τ) → (G1, ∗, τ1) be an α-(β, γ)-isomorphism. If (G, τ) is αβ-regular, (G1, τ1) is
αγ-regular and G1/f(N) is αβG1/f(N)

-regular for every normal subgroup N of G, then the quotient group G/N is
α-(βG/N , γG1/f(N))-isomorphic to G1/f(N).
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Proof. Obviously f(N) is a normal subgroup of G1 and the surjective quotient homomorphism q : G1 → G1/f(N)
is α-(γ, γG1/f(N))-continuous and α(γ,γG1/f(N))-open by Theorems 3.15 and 3.16. Therefore, the composition h = q◦f :

G→ G1/f(N) is a surjective α-(β, γG1/f(N))-continuous and α-(β, γG1/f(N))-open homomorphism with Ker(h) = N .
Therefore, by Theorem 3.23, G/N is α-(βG/N , γG1/f(N))-iseomorphic to G1/f(N).

Proposition 3.2. Let G,G1 and G2 be β-α-topological, β1-α-topological and β2-α-topological abelian groups re-
spectively and (G, τ) be αβ-regular. Let θi : G → Gi, i = 1, 2, be α-(β, βi)-continuous surjective α(β,βi)-open
homomorphisms and βi be α-open. If G/Ker(θi) is αβG/Ker(θi)-regular and Ker(θ1) ⊆ Ker(θ2), then there exists an
α-(β1, β2)-continuous homomorphism q : G1 → G2 such that θ2 = q ◦ θ1.

Proof. Assume thatKer(θ1) ⊆ Ker(θ2) holds. By Theorem 3.23, there exists an α-(βG/Ker(θi), βi)-iseomorphisms
fi : G/Ker(θi) → Gi such that θi = fi ◦ πi, where πi : G → G/Ker(θi) is the natural α-(β, βG/Ker(θi))-continuous
α(β,βG/Ker(θi))

-open homomorphisms for i = 1, 2. As Ker(θ1) ⊆ Ker(θ2), we get an α-(βG/Ker(θ1), βG/Ker(θ2))-
continuous homomorphism t as in the following diagram:

Obviously q = f2 ◦ t ◦ f−11 works.
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