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1 Introduction

Topological groups are objects that combine two separate structures-the structure of a topological space and the
algebraic structure of a group-linked by the requirement that the group operations are continuous with respect to
the underlying topology.

In 2013, operations defined on the family of a-open sets and c.,-open were introduced by Ibrahim [11]. In [I0],
Khalaf and Ibrahim defined -a-topological groups as a group G endowed with a topology. Also in [I0], some results
was given.

In this paper our aim is to develop the notion of S-a-topological group, we establish several theorems and
properties related to normal subgroup of S-a-topological group.

2 Preliminaries

Let A be a subset of a topological space (G, 7). We denote the interior and the closure of a set A by Int(A) and CI(A)
respectively. A subset A of a topological space (G, 7) is called a-open [12] if A C Int(Cl(Int(A))). The complement
of an a-open set is called a-closed. The intersection of all a-closed sets containing A is called the a-closure of A and is
denoted by aCl(A). By aO(G, ), we denote the family of all a-open sets of G. An operation 5 : «O(G,7) — P(G)
[T1] is a mapping satisfying the condition, V' C V¥ for each V € aO(G, 7). We call the mapping 3 an operation on
aO(G, ).

A subset A of G is called an ag-open set [I1] if for each point @ € A, there exists an c-open set U of G containing
x such that U? C A. The complement of an ag-open set is said to be ag-closed. We denote the set of all ag-open
sets of (G,T) by aO(G,7)s. The ag-closure [I1] of a subset A of G with an operation 5 on aO(G) is denoted by
agCl(A) and is defined to be the intersection of all ag-closed sets containing A. A point z € G is in aClg-closure
[I1] of aset A C G, if UPN A # ¢ for each a-open set U containing z. The aClg-closure of A is denoted by aClz(A).
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The union of all ag-open sets contained in A is called the ag-interior of A and denoted by aglnt(A) [3]. An
operation 8 on aO(G, 7) is said to be a-open [11] if for every a-open set U of © € G, there, exists an ag-open set
V of G such that z € V and V C UP. The operation id : a«O(G,7) — P(G) is defined by id(V) = V for any set
V € aO(G, 7) this operation is called the identity operation on aO(G, 7) [11].

An operation 8 : aO(G) — P(G) is said to be a-monotone on aO(G) [3] if for all A, B € a«O(G), A C B implies
AP C BP. An operation 8 : aO(G) — P(G) is said to be a-idempotent on «O(G) [3] if A%# = AP for all A € aO(G).

Definition 2.1. [J] Let S be any subset of G. An operation B from aO(G) to P(Q) is called a-stable with respect
to S if B has the following two properties:

1. For any subset H of G, UNH =V N H implies that U° N H = VA N H for every U,V € aO(G).

2. B induces an operation Bs : P(S) — P(S) such that (U N S)Ps =UP NS for every U € aO(G).

Definition 2.2. [2] A topological space (G, T) is said to be ag-reqular if for each x € G and for each a-open set
V in G containing x, there exists an a-open set U in G containing x such that UP C V.

Definition 2.3. [1] A space G is said to be a-compact if every a-open cover of G has a finite subcover

Definition 2.4. [7] A subset A of a topological space (G,T) is said to be a-B-compact of G if for every a-open
cover {V; i € I} of A, there exists a finite subset Iy of I such that A C \J{V/ :i € I}.

Definition 2.5. [/ Two subsets A and B of a topological space (G, T) are called ag-separated if (agCI(A) N B)U
(AN agCl(B)) = ¢.

Definition 2.6. [9] A subset C' of a space G is said to be ag-disconnected if there are nonempty ag-separated
subsets A and B of G such that C = AU B, otherwise C is called og-connected.

Definition 2.7. [J] A set C is called mazimal ag-connected set if it is ag-connected and if C C D C G where D
is ag-connected, then C = D. A mazimal ag-connected subset C of a space G is called an ag-component of G.

Definition 2.8. [J] A topological space (G,T) with an operation B on aO(G) is said to be:

1. An a-B-T1 space if for any two distinct points x,y € G, there exist two a-open sets U and V' containing x and
y, respectively, such thaty ¢ U® and x ¢ VP.

2. An a-B-Ty space if for any two distinct points x,y € G, there exist two a-open sets U and V' containing x and
y, respectively, such that U NVF = ¢.

Definition 2.9. [6] A space G is said to be weakly ag-regular space, if for any ag-closed set A and x ¢ A, there
exist ag-open sets U,V such thatt € U, ACV andUNV = ¢.

Definition 2.10. A function f : (G1,7) = (G,0) is said to be:

1. a-B-continuous [8] if for each point x in G and for each a-open set V of G containing f(x), there exists an
a-open set U of Gy containing x such that f(U) C VB,

2. a-(f1, B)-continuous [§] if for each x € G and each a-open set V' containing f(x), there exists an a-open set

U such that x € U and f(UP) C V5.

3. ag, p)-continuous [11] if for each x of G and each ag-open set V' containing f(x), there ewists an ag, -open

set U such that x € U and f(U) C V.
4. oqg,,p)-closed [11)] if for any ag, -closed set A of (G1,0), f(A) is ag-closed in (G, T).
5. as, pgy-open [8] if for any ap, -open set A of (G1,0), f(A) is ag-open in (G, T).
6. a-(B1,8)-homeomorphic [S] if f is bijective, a-(B1, B)-continuous and f~1 is a-(83, B1)-continuous.

Throughout this paper, (G, *,7) and (Gi,*,0), or simply G and Gy, will denote groups (G, *) and (Gq, %)
endowed with a topology 7 and o. The identity element of G is denoted by e. The operations 5 : aO(G) — P(G)
and 31 : «O(G1) — P(G;) are always operations defined on aO(G) and aO(G1), respectively.

The operation * : G x G — G, (x,y) — x * y is called the multiplication mapping and sometimes denoted by m,
and the inverse operation G — G, z — z~! is denoted by 1.
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Definition 2.11. [70] Let (G,*) be a group and T be a topology on G. Then, the multiplication map is B-a-
continuous in the first variable if and only if given a,b € G and O € aO(G,T) such that axb € O, then there is
U € aO(G, 1) witha € U and UP xb C OB. Similarly, multiplication is B-a-continuous in the second variable if and
only if given a,b € G and O € aO(G,T) such that axb € O, then there is V € aO(G,7) withb € V and axV? C O8.

Definition 2.12. [I0)] Let (G, *) be a group and T be a topology on G.

1. The inversion map is [-a-continuous if and only if given a € G and O € aO(G,T) such that a=! € O, then
there is U € aO(G, 1) with a € U and UP~" C OF, where UP~' = {z~1 : z € UP}.

2. The multiplication is jointly B-a-continuous in both variables if and only if given a,b € G and O € aO(G, T)
such that a b € O, then there exist U,V € aO(G,7) witha € U, b€V and U? x VP C OP.

3. A triple (G, *,7) is called a B-a-topological group if and only if inversion is S-a-continuous and multiplication
is jointly B-a-continuous in both variables.

Theorem 2.13. [10/ Let (G, *) be a group and T be a topology on G. Then inversion is B-a-continuous and
multiplication is jointly B-a-continuous in both variables if and only if for any elements a,b of G and a-open set O

with a x b~ € O, there exist a-open sets U and V containing a and b respectively such that U * ve! C 0°.

Corollary 2.14. [10] Suppose that the multiplication map is B-a-continuous in each variable. Let B be a-open,
a-monotone and a-idempotent. If S is a semigroup, then aClg(S) is also semigroup.

Theorem 2.15. [10] Let (G, *) be a group, T be a topology on G and (G,T) be ag-regular. If the multiplication
map is B-a-continuous in the second variable. If S is a semigroup, then agInt(S) is also semigroup.

Theorem 2.16. [10] Let A and B be nonempty subsets of a S-a-topological group (G,*,7) and B be identity. If
A and B are ag-connected, then A x B is ag-connected.

Theorem 2.17. [10] Let (G, %) be a group and T be a topology on G. If the multiplication map is B-a-continuous
in each variable. If A is arbitrary and B is ag-open, then Ax B and B x A are a-open.

Theorem 2.18. [I0] Let (G,*,T) be a B-a-topological group. If A is ag-closed and B is a-compact subsets of G,
then A+ B and B x A are a-closed.

Theorem 2.19. [I0] Let (G, *,7) be a B-a-topological group, (G,T) be ag-reqular and B be a-monotone, a-left
and ag-left. Then, G is a-B-Ty if and only if {e} is ag-closed.

Theorem 2.20. [1] Let (G,*) be a group, T be a topology on G and (G,T) be ag-regular. If the multiplication
map s [-a-continuous in each variable. If S is a normal set algebraically, then agInt(S) and agCI(S) are also
normals.

3 Quotient Group in p-a-topological Group

Recalling the following well known definition.

Definition 3.1. A non empty subset S of the group G is a subgroup of G if x xS =5 =8 xx for every x € S.
Equivalently, if for every xz,y € S, xxy~ 1 € S.
A subgroup S is a normal subgroup of G if x x sxx~ ' € S for each s € S and each x € X.

It is obvious that the group G and {e} both are normal subgroups of G.

Theorem 3.2. Let S be an a-open subgroup of a S-a-topological group (G, *,7) and 8 be an a-monotone operation
on aO(G) which is a-stable with respect to S. Then S is a Bg-a-topological group.

Proof. We have to show that for each z,y € S and each a-open subset W in S with zxy~! € W, there exist a-open
subsets U, V containing  and y respectively such that U?s x (V#s)=1 C W#s_ Since S is a-open in G, so there exists
an a-open set L in G such that W = L NS and since G is a B-a-topological group, then there are a-open sets A and
B containing = and y respectively such that A% x (B?)~! C (LNS)?. Thesets U = ANS and V = BN S are both in
a-open in §. Also, UPs «(V53s5)~1 = (ANS)Psx((B N S)Ps)~L = (APNS)=(BP N S) ' C AB«(BP)~1 C (LNS)? C LP
implies that UPs x (VAs)~1 = (UPs x (VBs)"1YNn S C LP NS = (LN S)Ps = Whs. Hence, by Theorem we
obtain that S is a Sg-a-topological group.
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Theorem 3.3. Let (G, *) be a group and T be a topology on G. If the multiplication map is B-a-continuous in
the second variable, then the following statements are true:

1. If H is an ag-open subgroup of G, then it is a-closed in G.

2. If a subgroup H of G contains a non empty ag-open set, then H is a-open in G.

Proof.

1. Let H be an ag-open subgroup of G. Then, by Theorem every left coset x x H is a-open. Thus,
Y = UweG\H x x H is also a-open as a union of a-open sets. Then H = G\ Y and so H is a-closed.

2. Let B be a non empty ag-open subset of G with B C H . Then, by Theorem we have h x B is a-open
in G for any h € H. Since H is a subgroup of GG, so hx B C H for all h € H. Therefore, H = |J,cy h * B is
also a-open as a union of a-open sets.

Theorem 3.4. Let (G,*,7) be a B-a-topological group and S a subgroup of G. If B is a-open, a-monotone and
a-idempotent, then:

1. The set aClg(S) = agCI(S) is a subgroup of G.

2. If (G, 1) is ag-reqular, then the set S = agCl(S) = aClg(S) if and only if there exists an ag-open set Q such
that QNS = Q NagCl(S) # ¢.

Proof.

1. Since S is a semigroup, by Corollary aClg(S) is a semigroup. Since § is a-open and e € S, so e €
aClg(S) = agCl(S). Let a € agCI(S) and O € aO(G, T)s such that a=! € O, since f is a-(3, 3)-continuous,
then O~! € aO(G,7)s and a € O~!. Thus there is b € SNO~!. Then b=! € SN O and a! € agCl(S) =
aClg(S). Therefore aClg(S) = agCI(S) is a subgroup of G.

2. If S = agCIi(S), then G is an ag-open set and GN S = G NagCl(S) # ¢.

Conversely, let z € agCI(S) and c € SNQ, then zxQ*c~! € aO(G, 7) = aO(G, 7)5 such that x = zxcxc™! €
xxQ+c~ L. Thus there is s € SNx*Q*c~! which implies there is ¢ € Q such that s = z*xg*c™!. Since z*xgxc™!
and c are elements of S, zxq = x*xq*xc 'xc € S. Hence, g € 271%S C agCI(S) and ¢ € QNagCIl(S) = QNS.
Thus ¢ € S. Since ¢! and z * ¢ are elements of S, so x = (z*q) x¢~' € S. Therefore agCI(S) C S and
S = Ongl(S) = OzClg(S).

Theorem 3.5. Let (G,*,7) be a B-a-topological group and S a subgroup of G. If (G,T) is ag-regular and
aglnt(S) # ¢, then agInt(S) = S = agCI(S).

Proof. Let x € agInt(S), then there is an ag-open set O containing x such that O C S. Thus rleotCs
and 27! € agInt(S). Since aglnt(S) is a semigroup by Theorem e=zxx" ! € aglnt(9).

Let © € S, then . = z x e € & * agInt(S) C S. Therefore x € aglnt(S) and S = aglnt(S).

Let z € agCl(S), then S = aglnt(S) and e € S imply zxe € 2% S € aO(G,7) = aO(G, ) such that z € z S.
Since SNz xS # ¢, there is an s; € SN * S such that s; = x * s for some s5 € S. Then x = s1 *52_1 € S. Hence
agCIl(S) C S and S = agCl(S). Therefore, agInt(S) = S = agCI(S).

Theorem 3.6. Let (G,*,7) be a S-a-topological group and B be identity. If G is ag-component subset of G such
that e € Ge, then G, is ag-closed normal subgroup.

Proof. Since G, is ag-closed as it is an ag-component. Let a € G, then by Theorem a* G, is ag-connected.
Thus there is an ag-component C of G such that axG, C C. If C' # G, then C' and G are separated, but a € CNGe..
Therefore C = G, and a * G, C G.. Let b € G, since a™! * G, is ag-connected and e € a=* x G, so a™ x G, C G..
Thus ™' xb € G, and b € a *x G.. Hence G. C a * G, and G¢ = a * G,. Similarly G, * a = G,. Therefore G. is a
subgroup.

Let € G, then z % G, x 27! is ag-connected and e € x * G, * z~! implies z * G *x ! C G.. Similarly
2 %G xx C G, thus Ge C & % G, x x~ L. Therefore G, =z * G, * x~! and G, is normal.

Theorem 3.7. Let (G,*,T) be a B-a-topological group. If A is an ag-closed subset of G, then the normalizer of
A is ag-closed subgroups of G.
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Proof. Let N = {x : x *x A = A xz} denote the normalizer of A and let y € N, then y *x A = A % y implies
y 'xA=Axy ! thusy ' € N. If 2,y € N, then

(rxy HNxA=azx(ytxA) =ax(Axy ) =(xxA)xy P =Ax(xxy!). Hencexxy~ ! € N and N is a
subgroup.

Let 7 € aClg(N) and let rxa € r+ A for a € A. Let O € aO(G, 1) such that r xa+r~! € O, then there are
a-open sets U and V such that r € U, a € V and Uﬂ*Vﬁ*Uﬂ_lgOﬁ. There is n € UP NN, thus nxaxn~' € OP.
Since n* A = Axn,sonxa*xn~t € ANOP. Thus rxa+r~1 € aClg(A) = A, hence r xaxr~! € A. Then
(r*a*r‘l)*r:r*aeA*r and rx« A C Axr. Similarly Axr Cr+xAandsor* A= Axr. Hence r € N and N
is ag-closed.

Theorem 3.8. Let (G, x,7) be a B-a-topological group and A be a subset of G. If G is a--Ts, then the centralizer
of A is ag-closed subgroups of G.

Proof. Let C = {z:xxa=axx for all a € A} denote the centralizer of A. Let y € C, then y xa = a *y for
every a € A. Hence axy~' =y ' xa for every a € A, thus y~! € C. Let 2,y € C and a € A, then

(xxy Dxa=ax(y 1xa)=ax*(axy ) =(rxa)xy ' =ax(x+xy'). Thus zxy~! € C and consequently C
is a subgroup.

Let p € aClg(C). Let a € A and O € aO(G, 7) such that p* a+p~! € O, then there are a-open sets U and V/
with p € U, a € V and UP « VP % (UP)~1 C OP. Since thereis 2 € U NC, zxax2~! € O, but x xa = a * z,
thus @ = x *a * 2~ € OP. Therefore for every O € aO(G, ) such that p* a *p~! € O, then a € O. Suppose
p*axp !t # a, since G is a-B-Ty, then there are a-open sets K and L such that a € K, pxa*p~! € L and
KBPNLP =¢, but pxaxp~! € L implies a € L?. This is a contradiction and thus, a = pxa*p~' and p € C. Hence
C' is ag-closed.

Theorem 3.9. Let (G,*,7) be a B-a-topological group and S a commutative subgroup of G. Suppose that B is
a-open, a-monotone and a-idempotent. If G is a-f-Ts, then aClg(S) = agCI(S) is a commutative subgroup of G.

Proof. By Theorem [3.4] (1), aClg(S) = aCI(S) is a subgroup.

Let a € S and p € aClg(S). Let O € aO(G,7) such that p*xa*p~! € O, then there are a-open sets U and V
such that p € U, a € V' and UB VB U™ C OP. Since thereisan x € UP NS, zxaxz ' € O, but xxa € S
implies z xa = a xx, thus a = x xa* 2~ € OF. Therefore, if pxa*p~! € OP and O is an a-open set containing
pxaxp ', then a € OP. Since G is a-B-T5, this implies p*x a*p~! = a, thus pxa*xp ' =a and pxa = a *p.

Let p,z € aClg(S) and suppose pxx # z*p. Then G being a-8-T, implies there are a-open sets O; and O such
that pxx € Oy, z*p € Oy and Olﬁ no~s = ¢. Since p * x € Oy, there exist a-open sets Uy and V; such that p € Uy,
z € Vi and Ulﬁ * Vlﬁ - Of. Similarly there are a-open sets Uy and V5 such that p € Us, z € V5 and Vf * Ug - Og.
Let U =U;NUy and V = Vi NV, then U and V are a-open, pe U, z € V, UP«x VP C Of and VA xUP C 05. Since
p, € aClg(S), there are elements a and b of S such that a € U NS and b€ VPN S. Thus axbe UP VP C Of
and bxa € VP xUP C Og, but a *xb=bx*a implies axb € Of N Og. Since Of and Og were defined to be disjoint,
the supposition is incorrect. Therefore p* = = * p and aClg(S) = agCI(S) is commutative.

Theorem 3.10. Let (G, *,7) be a S-a-topological group and 8 be a-open, c-monotone and a-idempotent. If S a
subgroup of G, K is a normal subgroup of S and G = aClg(S), then aClg(K) = agCIl(K) is a normal subgroup of
G.

Proof. Since K is a subgroup of S, so K is a subgroup of GG, thus by Theorem (1), aClg(K) = agCl(K) is a
subgroup of G.

Let 7 € Gand zxy*z~! € 2% aClg(K)xx~! where y € aClg(K). Let O € aO(G, 1) such that zxyxx~1 € O,
then there are a-open sets U and V with € U, y € V and UP * V7 x U~ C 08, Since G = aClg(S), there
is s € SNUP and y € aClg(K) implies there is k € VAN K. Thus s * k*s~t € OP. Since K is normal with
respect to S, s*x k*s~! € OP N K, hence z xy x 271 € aClg(K) and x * aClg(K) x 271 C aClg(K). Similarly
7t xaClg(K)*x C aClg(K) and aClg(K) C z * aClg(K) x x~!. Therefore aClg(K) = x * aClg(K) x =" for all
x € G. Hence, K is normal in G.

Definition 3.11. Let S be a normal subgroup of a group G. Consider the family G/S = {gxS : g € G}, consisting
of all left cosets g+ S of S in G. We define the binary operation x on G/S by the formula g+ S*pxS = g*pxS for
all g,p € G. The operation * makes G/S a group whose neutral element is S and where the inverse of an element
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gxSisg1*S.

Consider the mapping m : G — G/S defined by n(g) = g * S, for each g € G, then this mapping is a group
homomorphism and for each g € G, we have m=*(n(g)) = g * S.

Let (G, *,7T) be a B-a-topological group. Denote by T the topology of G/S and it is called the quotient topology of
the quotient group G/S of the group G. In the set G/S, we define a family 7 and aO(G/S, 7") of subsets as follows:

T ={0CG/S:nYO) e} and

aO(G/S,7)={0 C G/S : 7 1(0) € aO(G,1)}.

From the operation 3 which is defined on aO(G,T), we define the operation Bg/s : aO(G/S, T,) — P(G/S) as
follows:

(n(U))Pers = n(UP) for every U € aO(G,7) and 7(U) € aO(G/S, 7).

Example 3.12. Consider the 3-a-topological group (Z12,+12,7), where T = {¢, Z12,{0,1,2,3,4,5},{6,7,8,9,10,11}}
and for each A € aO(Zy2,7), we define B on aO(Zy2,7) by AP = Zi5. Let S = {0,3,6,9}, so Z12/S =
{8,1+12 85,2412 S}. Then, aO(Z12/S,7) = {¢, Z12/S}.

Theorem 3.13. Let (G, *,7T) be a S-a-topological group and let S be a normal subgroup of G. If (G, T) is ag-
regular, then (G/S, *,T/) is a Bg/s-a-topological group.

Proof. First we show that m(U) € aO(G/S,7) for every U € aO(G,7). By the definition of the topology
aO(G/S,7"), we have that 7(U) € aO(G/S,7 ) when 7~ (n(U)) € aO(G, 7). For every g € G, we have 7~ (n(g)) =
g * S from this it follows that 7= 1(7(U)) = Uger 9 %S = U % S. By Theorem we have U * S € aO(G, 1)
whenever U € aO(G, 1) = aO(G, 7)s because (G, ) is ag-regular. Hence, we have 7~ (w(U)) € aO(G,7) and so
7(U) € aO(G/S,7"), for every U € aO(G, ).

Next we show that the multiplication mapping (a,b) — a * b is jointly SBg /5-a-continuous in both variables
(G/S,7) x (G)S,7) = (G/S, 7).

Let O € aO(G/S,7) and let a,b € G/S such that axb € O. Let 2,y € G satisfy a = n(x) and b = 7(y).
Since 7 is homomorphism, so m(z % y) = 7(z) * 7(y) = a* b € O and thus z *y € 7~ 1(0). Since O € aO(G/S,7),
we have 771(0) € aO(G, 7). Since (G, *,7) is a B-a-topological group and x xy € 7~ 1(0) € aO(G, 7), there exist
U,V € aO(G,7) such that x € U, y € V and U? * V8 C (7=1(0))?. Again since 7 is a homomorphism, we have
n(UP * VB) = n(UP) + n(VF). Since UP x VB C (771(0))?, we have 7(U?  V#) C 7((m=1(0))?) and therefore
7(UP) x n(VB) C (7~ 1(0))?) implies (7(U))Pc/s x (m(V))Pers C (n(x~1(0)))Pe/s = OPe/s. Hence, we have that
7(U) € aO(G/S,7") and n(V) € aO(G/S,7'). Since a = n(z) € n(U) and b = n(y) € 7(V), we have shown that the
multiplication mapping is jointly 8g,s-a-continuous in both variables.

Now, we have to show that the inversion mapping a — a~! is Ba/s-a-continuous (G/S, T/) — (G/S, 7'/).

Let a € G/S and let O € aO(G/S,7) such that a=* € O. let 2 € G such that a=' = w(z~1) and a = 7 (x).
Then 7(z~!) = a=! € O and thus 27! € 771(0). Since 771(0) € aO(G, 1), there is an a-open set U such that
z €U and (UP)~! C (x~1(0))?. Now n(z) = a € 7(U), and 7(U) € aO(G/S,7 ). Since 7 is a homomorphism,
o ﬂ'(UfB_l) C 7(7~40))? implies 7(U#)~' C w(7~1(0))? and hence (7(U))Pc/s)~1 C (n(x~1(0)))Pers = OPers.
Therefore the inversion is ¢/ g-a-continuous and hence (G/S, *, 7") is a Bg/g-a-topological group.

Example 3.14. Let (Zs,+¢) be a group, T be the discrete topology on Zg and S = {0,3}, then
CYO(Zg/S’ T ) = {(ba ZG/S7 {S}a {1 +6 S}a {2 +6 S}a {Sa 1 +6 5}7 {Sa 2 +6 S}v {1 +6 S, 2 +6 S}}
Now, for each A € aO(Zg,T), we define B on aO(Zg, T) by

48— A if A is singleton set,
| Zg otherwise.

Then, {S}P7s/s = ({0,3})%%6/s = n({0,3}%) = 7(Zs) = Zs/S,

{140 S}P20/s = n({1, 41705 = n({1,4}%) = 7(Zs) = Zo/5,

{2 46 5}70/5 = m({2,5})770/5 = 7({2,5}°) = 7(Zs) = Zs/5,

{8,144 S}26/s = 7({0,1,3,4})P7/s = 1({0,1,3,4}°) = n(Zs) = Zs/ S,

{8,246 S}P7e/s = ({0,2,3,5})P%/s = 1({0,2,3,5}°) = n(Zs) = Zs/S and

{146 8,2 +6 S}P2e/s = w({1,2,4,5})%/s = 7({1,2,4,5}°) = n(Zs) = Zs/S.

Therefore, (Zg,+¢,T) is S-a-topological group and (Zg/S, —|—6,7',) is a Bz4,s-a-topological group.
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Theorem 3.15. If (G, 7) is ag-regular and (G/S, ') is Qg s -regular, then the natural homomorphism m from the
B-a-topological group G to its quotient group G/S is an a-Bgs-continuous, a-(3, Ba/s)-continuous and XB,Bays)
continuous mapping.

Proof. Since (G, 7) is ag-regular and (G/S,7") is apg, s-regular, then aO(G,7) = aO(G, 1) and aO(G/S, )=
aO(G/S8, 7 )pg,s-

Let O € aO(G/S, T,)QG/S, then 71(0) is ag-open in G by Definition , therefore 7 is a-f/g-continuous,
a-(8, Bgs)-continuous and Q(8,6,5)-Continuous.

Theorem 3.16. If (G/S, 7'/) is gy, s -regular, then the natural homomorphism m from a B-a-topological group G
to its quotient group G/S is an Q8,8 ,5)OPEN mapping.

Proof. Let U € aO(G, T)s, then U € aO(G, 7). Since in the beginning of the proof of Theorem we showed
that 7(U) € aO(G/S,7 ) whenever U € aO(G, 7). As a consequence, 7 is an (8,5, )-OPEN Mapping.

Theorem 3.17. Let S be an a-compact normal subgroup of a B-a-topological group G. If (G, T) is ag-regular and
(G/s, 7'/) is apg s -reqular, then the natural homomorphism m: G — G /S is an (B, s)~Closed mapping.

Proof. Let F' be an ag-closed subset of G. By Theorem the set F' % .S is a-closed in G and hence the set
G\ (F'*5) is a-open. Since 7 is a(g g, 5)-0pen mapping, the subset (G \ (F * 5)) of G/S is ag,,;-open. We have
that F xS = 7~ 1(n(F)) and hence that G\ (F % S) = 7~ }(G/S\ n(F)). It follows that (G \ (F *S)) = G/S\ n(F).
By the foregoing, the set G/S\ 7(F') is ag, s-open in G/S, hence 7(F) is ag,, ;-closed in G/S.

Theorem 3.18. Let S be a normal subgroup of a B-c-topological group G and 3 be ac-monotone, a-left and ag-left.
Suppose (G, T) is ag-reqular and (G/S, 7'/) is ap, s -regular. Then, G/S is a-Bg/s-T1 if and only if S is ag-closed.

Proof. Let G/S be a-Bgs-T1, then the subset {S} of G/S is ag, s-closed, from this it follows by a-(8, Ba/s)-
continuity of the mapping 7, that the subset S = 771({S}) of G is ag-closed.

Conversely, assume S is ag-closed in G, then G\ S is ag-open and it follows from Q8,8 5)-OPENNESS of the
mapping 7 that the subset (G \ S) of G/S is ap,; s-open, since G/S\ {S} = (G \ §), then the subset {S} of G/S
is g, g-closed and by Theorem G /S is a-fg)s-Te. Therefore G/S is a-fBg/s-T1.

Theorem 3.19. Let S be a normal subgroup of a B-a-topological group G. Suppose (G,T) is ag-regular and
(G/S,7) is g, s -reqular.

1. If G is ag-connected, then G/S is ag,;,-connected.

2. If G is a-compact, then G /S is a-fq s-compact.

Proof.

1. Assume G is ag-connected, then 7 being o go-continuous implies m(G) = G/S is g, -connected.
2. Since 7 is a-fg/g-continuous and onto and G is a-compact, then G/S is a-f¢,g-compact.

Theorem 3.20. Let (G, *,7) be a B-a-topological group, (G,T) be ag-regular and (G/S, ') be agg -regular. If 8

is a-open, a-monotone, a-idempotent a-left and ag-left, then (G/aClﬁ({e}),*J/) is an a-BS Ty B -a-topological
group.

Proof. Since {e} is a normal subgroup, by Theorems and (1) , aClg({e}) is a normal subgroup, thus
by Theorem G/aClg({e}) is a Bg/s-a-topological group. Since aClg({e}) is ag-closed, by Theorem
G/aClg({e}) is a-Bg/s-T1. Therefore by Theorem G/aClg({e}) is a-Bg/s-To.

Proposition 3.1. Let (G,*,7) be a B-a-topological group, (G,T) be ag-regular, (G/S, T/) be ag,, s -regular, S be a
normal subgroup of G, m be the natural mapping of G onto G/S and let UandV be an a-open subsets of G such that
ecU,ecV and V'« V CU. Then ag,, Cl(n(V)) C n(U).
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Proof. Take any x € G such that 7(z) € ag,,;Cl(m(V)). Since V * x is an a-open set containing z and the
mapping 7 is a(g ., 5)-open, then m(V x ) is an ag, ;-open set containing m(z). Therefore, m(V xz) N w(V) # ¢.
It follows that, for some a € V and b € V, we have w(a x x) = m(b), that is, a x x = b * h, for some h € S. Hence,
r=(a"txb)xheUxS, sinceat+xbe V1%V CU. Therefore, n(z) € n(U * S) = n(U).

Corollary 3.21. Let (G, *,7) be a B-a-topological group, (G/S, 7',) be age -regular, S be a normal subgroup of G
and 7 be the natural mapping of G onto G/S. If f : G/S — G is a mapping such that the composition f o m is
a-(B,7)-continuous and vy is an a-open operation on aO(G1), then f is a-(Ba/s,7)-continuous.

Proof. Let W be an a,-open set in Gy. Since f o7 is a-(3,7)-continuous, then (f o) (W) =~ 1(f~1(W)) is
ag-open in G. Since by Theorem , T is an o gg)-open mapping, then m(x (fTHW)) = fH(W) is apg,, s-open
in G/S. Therefore, f is a-(Bg/s,7)-continuous.

Definition 3.22. Let G be S-a-topological group and Gy be ~y-a-topological group. If there exists a homomorphism
function f : G — G such that [ is a-(8,7)-homeomorphism, then G is said to be a-(8,~)-isomorphic to Gy, and
the function f is said to be a-(8,)-isomorphism.

Theorem 3.23. (The fundamental homomorphism theorem)
Let (G,*,7) be a [-a-topological group and (G,T) be ag-regular. If 6 is an a-(B,7)-continuous homomorphism
of G onto Gy, v is an a-open operation on aO(G1) and (G/07'(e'),T) is g i, ,)—regular, then G/071(e) is

a-(BG/efl(e/),7)-iseomorphic to G if and only if 0 is « (g )-open, where e is identity element of G1.

Proof. Since 6 is a homomorphism, so obviously 9_1(6/) is a normal subgroup of G. Let m be the natural map
from G to G/07'(e’). Assume 0 is a(g,)-open. Now, we have to show that G/0~'(e') and G are a-(Bgo-1(e'y: )-

iscomorphic. Define f: G/071(¢') — Gy as fonr =6, thus

G—% ~q
-
G/67(e)

Let y € Gy. Since 6 is onto, there is an z € G such that (z) = y. Let Z = n(x) for T € G/6'(¢'), then
y = 0r~YZ) = f(Z). Thus f is onto.

To show that f is one to one, suppose that f(a x 8=(e')) = f(b* 0~1(¢)), where 7(a) = a % 0~ 1(¢') and
7(b) =bx 0~ 1(e') for a,b € G. Then f(n(a)) = f(w(b)) implies f(a) = 6(b), so

e =0"1a)*0(b) = 0(a= ") * 0(b) = O(a~" xb), used 6 is homomorphism.
Thus, a=! b € §~ (') implies that a * 0~1(e') = b* 0~ 1(e'). Thus f is one to one.

Now, f[(ax67"(e')x(bx071 ()] = fl(axb) 0 ()] = f(m(axb)) = O(axb) = O(a)x0(b) = f(m(a))* f(w(b)) =
flax67(e)) * f(b*61(e")). Thus f is homomorphism.

Let O be an a,-open set in G. Since 6 is a-(3,v)-continuous and 7 is a(g g

FH0) is B0t
Let O be an ag

-open, then 70~1(0) =

G’/O*l(e,))

-open in G/0~1(¢'). Thus f is a-(Bg /g-1(e’y» 7)-continuous.

-open set in G/H‘l(e,). Since 7 is a-(8, ﬂgﬂl(e,))—continuous and O is ag -open,

G/o—1(") G/o—1’)
67~1(0) = f(O) is a,-open in Gi. Thus f~' is a-(7; Bgjg-1(ey)-continuous. Therefore f is an a-(Bg/p-1(c'),7)-
iseomorphism.

Conversely, assume f is an a-(ﬂg/e,l(e/), «y)-iseomorphism such that § = fr. Let O be an ag-open set in G, since
s a—(ﬁ,ﬁc/o,l(er))—open and f~!is a-(’y,ﬂG/G,l(e/))-continuous, then fm(O) =0(0) is ay-open in Gy. Hence 6 is
Q(8,y)~OPED.

Corollary 3.24. Let f : (G,*,7) = (G1,*,71) be an a-(8,v)-isomorphism. If (G,T) is ag-regular, (G1,71) is
ay-reqular and G1/f(N) is ABg, sy -Tegular for every normal subgroup N of G, then the quotient group G/N is
a—(ﬂg/N,fyGl/f(N))—isomorphic to G1/f(N).
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Proof. Obviously f(N) is a normal subgroup of G and the surjective quotient homomorphism ¢ : G; — G1/f(N)
is a-(77, 7, /(n))-continuous and Ay,5g, 1 (xy)-OPED by Theoremsand 3.16l Therefore, the composition h = gof :
G — G1/f(N) is a surjective a-(8, va, s 7(n))-continuous and a-(f3, va, /f(n))-open homomorphism with Ker(h) = N.
Therefore, by Theorem G/N is a-(Ba N, VG, /#(N))-iseomorphic to G/ f(NN).

Proposition 3.2. Let G,G1 and G2 be B-a-topological, B1-a-topological and Bo-c-topological abelian groups re-
spectively and (G,7) be ag-reqular. Let 0; : G — Gy, i = 1,2, be a-(B, B;)-continuous surjective g g,)-open
homomorphisms and B3; be c-open. If G/Ker(0;) is apg . 0, -regular and Ker(61) C Ker(62), then there exists an
a-(B1, B2)-continuous homomorphism q : G1 — Go such that 63 = go 0.

Proof. Assume that Ker(6;) C Ker(62) holds. By Theorem there exists an a-(8¢/ker(9,), Bi)-iseomorphisms
fi : G/Ker(0;) — G; such that 6; = f; o m;, where m; : G — G/Ker(0;) is the natural a-(3, Ba,ker(s,))-continuous
O(B,6G)er(o,)) OPED homomorphisms for i = 1,2. As Ker(0;) C Ker(02), we get an a-(8g/ker0,), Ba/Ker(62))-
continuous homomorphism ¢ as in the following diagram:

G/Ker(6,)

Obviously ¢ = faoto f ! works.
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