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1 Introduction

Compactness and properties closely related to compactness play an important role in the applications of general
topology to real analysis and functional analysis. Mashhour et al. [11] defined preopen sets and precontinuous
functions. In 2014, Khalaf and Mershkhan [9] introduced Pp-open sets, which are stronger than preopen sets, in
order to investigate the characterization of Pp-continuous functions. Jafari [4] defined the concept of θ-compact
spaces. Mashhour et al. [12] introduced the concept of strongly compact spaces. The aim of this paper is giving
some characterizations of Pp-compact spaces in terms of nets and filter bases. The class of Pp-compact spaces lies
strictly between the classes of strongly compact space and θ-compact space, but it is not comparable with compact
space. We also introduce the notion of Pp-complete accumulation points by which we give some characterizations of
Pp-compact spaces.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y ) stand for topological spaces with no separation
axioms are assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be
denoted by Cl(A) and Int(A), respectively. A ⊆ X is said to be preopen [11] (resp., semi-open [10] and α-open [17]) if
A ⊂ Int(Cl(A)) (resp., A ⊆ Cl(Int(A)) and A ⊂ Int(Cl(Int(A)))). The complement of a preopen (resp., semi-open)
set is preclosed (resp., semi-closed). A ⊆ X is called preclopen [6] if A is both preopen and peclosed. Also A ⊆ X
is called θ-open [21] if for each x ∈ A, there exists an open set G such that x ∈ G ⊆ Cl(G) ⊆ A. A preopen subset
A of X is called Pp-open [9] (resp., PS-open [7]) if for each x ∈ A, there exists a preclosed (resp., semi-closed) set F
such that x ∈ F ⊆ A. The complement of a Pp-open set is a Pp-closed. A subset A of X is pre-regular open [15] if
A =pInt(pCl(A)). The family of all preopen (resp., pre-regular open, θ-open, Pp-open and PS-open) of X is denoted
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by PO(X) (resp., PRO(X), θO(X), PpO(X) and PSO(X)). The preclosure (resp., Pp-closure) of A, denoted by
pCl(A) (resp., PpCl(A)) is defined as the intersection of all preclosed (resp., Pp-closed) sets. The preinterior (resp.,
Pp-interior) of A, denoted by pInt(A) (resp., PpInt(A)) is defined as the union of all preopen (resp., Pp-open) sets.

Definition 1. A space X is said to be:

1. locally indiscrete [3] if every open subset of X is closed.

2. pre-T1 [6] if for each pair of distinct points x, y of X, there exist two preopen sets one containing x but not y
and the other containing y but not x.

3. pre-regular [19] if for each preclosed F and each point x /∈ F , there exist disjoint preopen sets U and V such
that x ∈ U and F ⊆ V .

Lemma 2. [19] A space X is pre-regular if and only if for each x ∈ X and each G ∈ PO(X) there exists H ∈ PO(X)
such that x ∈ H ⊆ pCl(H) ⊆ G.

Proposition 3. The following statements are true:

1. If X is pre-T1, then PO(X) = PpO(X) [9].

2. If X is pre-regular, then τ ⊆ PpO(X) [9].

3. If X is locally indiscrete, then τ = PSO(X) [7].

4. If X is locally indiscrete, then τ ⊆ PpO(X) [9].

5. If X is locally indiscrete, then PO(X) = PpO(X) [9].

Lemma 4. [9] Let Y be a subspace of a space X and A ⊆ X. Then the following properties are hold:

1. If A ∈ PpO(Y ) and either Y is either preclopen or Y ∈ PRO(X), then A ∈ PpO(X).

2. If A ∈ PpO(X) and Y is both α-open and preclosed subset of X, then A ∩ Y ∈ PpO(Y ).

Definition 5. A filter base = is said to be p-converges [5] (resp., θ-converges [2], PS-converges [8]) to a point x ∈ X
if for every preopen (resp., θ-open and PS-open) set V containing x, there exists an F ∈ = such that F ⊆ V .

Definition 6. [21] A filter base = is said to be δ-converges to a point x ∈ X if for every open set V containing x,
there exists an F ∈ = such that F ⊆ Int(Cl(V )).

Definition 7. A filter base = is said to be p-accumulates [5] (resp., θ-accumulates [2] and PS-accumulates [8]) to a
point x ∈ X if F ∩ V 6= φ for every preopen (resp., θ-open and PS-open) set V containing x and every F ∈ =.

Definition 8. A space X is said to be strongly compact [12] (resp., θ-compact [4]) if every preopen (resp., θ-open)
cover of X has a finite subcover.

Definition 9. [1] A space X is said to be p-closed if for every preopen cover {Vα : α ∈ ∆} of X, there exists a finite
subset ∆0 of ∆ such that X = ∪{pCl(Vα) : α ∈ ∆0}.

Definition 10. A subset A of a space X is said to be N -closed [18] relative to X if for every cover {Vα : α ∈ ∆} of
A by open sets of X, there exists a finite subset ∆0 of ∆ such that A ⊆ ∪{Int(Cl(Vα)) : α ∈ ∆0}. A space X is said
to be nearly compact [20] if X is N -closed relative to X.

Definition 11. A function f : X → Y is called precontinuous [11] (resp., Pp-continuous [9]) at a point x ∈ X if
for each open set V of Y containing f(x), there exists a preopen (resp. Pp-open) set U of X containing x such that
f(U) ⊆ V .

Definition 12. A function f : X → Y is called almost precontinuous [16] (resp., almost Pp-continuous [14]) at a
point x ∈ X if for each open set V of Y containing f(x), there exists a preopen (resp., Pp-open) set U of X containing
x such that f(U) ⊆ IntCl(V ).

Theorem 13. [13] If f : X → Y is a continuous and open function and V is a Pp-open set of Y , then f−1(V ) is a
Pp-open set of X.
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3 Pp-Compact Spaces

In this section, we introduce a new class of spaces called Pp-compact spaces and study some of its properties.

Definition 14. A filter base = on X Pp-converges to a point x ∈ X if for every Pp-open set V containing x, there
exists an F ∈ = such that F ⊆ V .

Definition 15. A filter base = on X Pp-accumulates to a point x ∈ X if F ∩ V 6= φ, for every Pp-open set V
containing x and every F ∈ =.

Remark 16. A filter base = Pp-accumulates at x if and only if x ∈
⋂
{PpCl(F ) : F ∈ =}. Clearly, if a filter base =

Pp-converges to a point x ∈ X, then = Pp-accumulates to a point x.

The converse of Remark 16 is not true in general as shown by the following example.

Example 17. Consider X = {a, b, c, d} with τ = {φ, {a}, {a, b}, {c, d}, {a, c, d}, X} and = = {{b, c}, {a, b, c}, {b, c, d}, X}.
Then PpO(X) = {φ, {c}, {d}, {c, d}, {a, b},
{a, b, c}, {a, b, d}, X}. Thus = Pp-accumulates to a, but = does not Pp-converges to a, because the set {a, b} is a
Pp-open set containing a, and there is no an F ∈ = such that F ⊆ {a, b}.

Theorem 18. Let = be a filter base on X. Then there exists a filter base finer than {ux}, where {ux} is the family
of Pp-open sets of X containing x if and only if there exists a filter base =1 finer than = and Pp-converges to x.

Proof. Let =1 be a filter base which is finer than both = and {ux}. Then = Pp-converges to x since it contains {ux}.
Conversely, let =1 be the filter base which is finer than = and converges to x. Then = must contain {ux} by
definition.

Corollary 19. If = is a maximal filter base on X, then = Pp-converges to a point x ∈ X if and only if = Pp-
ccumulates to a point x.

Proof. Let = be a maximal filter base in X and Pp-accumulates to a point x ∈ X,then by Theorem 18, there exists a
filter base =1 finer than = and Pp-converges to x. But = is a maximal filter base. Thus it is Pp-convergent to x.

Proposition 20. Let = be a filter base on X. If = p-converges to a point x ∈ X, then = Pp-converges to a point x.

Proof. Suppose that = p-converges to a point x ∈ X. Let V be any Pp-open set containing x, then V is preopen set
containing x. Since = p-converges to a point x ∈ X, there exists an F ∈ = such that F ⊆ V . This shows that =
Pp-converges to a point x.

Proposition 21. Let = be a filter base on X. If = p-accumulates to a point x ∈ X, then = Pp-accumulates to a
point x.

Proof. The proof is similar to the Proposition 20.

The following examples show that the converses of Proposition 20 and Proposition 21 is not true in general.

Example 22. Consider X = {a, b, c, d} with τ = {φ, {b}, {a, d}, {a, b, d}, X} and = = {{b, c}, {a, b, c}, {b, c, d}, X}.
Then PO(X) = {φ, {a}, {b}, {d}, {a, b},
{a, d}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, X} and PpO(X) = {φ, {a}, {d}, {a, d},
{a, b, c}, {b, c, d}, X}. Thus = Pp-converges to b, but = does not p-converges to b, because the set {b} is preopen
containing b, and there is no an F ∈ = such that F ⊆ {b}.

Example 23. In Example 17, PO(X) = {φ,{a},{c},{d},{a, b},{a, c},{a, d},{c, d},{a, b, c},{a, b, d},{a, c, d}, X}.
Thus = Pp-accumulates to a, but = does not P -accumulates to a, because the set {a} is preopen containing a, and
there exists an F ∈ = such that F ∩ {a} = φ.

Proposition 24. Let = be a filter base on X. If = Pp-converges (resp., Pp-accumulates) to a point x ∈ X, then =
θ-converges (resp., θ-accumulates) to a point x.

Proof. Obvious from the fact that every θ-open set is Pp-open.
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Proposition 25. Let = be a filter base in a locally indiscrete space X. If = Pp-converges (resp., Pp-accumulates)
to a point x ∈ X, then = PS-converges (resp., PS-accumulates) to a point x.

Proof. Suppose that = be a filter base Pp-converges (resp., Pp-accumulates) to a point x ∈ X. Let V be any PS-
open set containing x. Since X is a locally indiscrete space, then by Proposition 3 (3) and (5), V is a Pp-open set
containing x. Since = Pp-converges (resp., Pp-accumulates) to a point x ∈ X, then there exists an F ∈ = such that
F ⊆ V (resp., F ∩ V 6= φ). This shows that = PS-converges (resp., PS-accumulates ) to a point x.

The converses of Proposition 25 and Proposition 24 are not true as shown by the next example.

Example 26. Consider X = {a, b, c, d} with τ = {φ, {a}, {b, c, d}, X} and = = {{b, c}, {a, b, c}, {b, c, d}, X}. Then
PpO(X) is a discrete topology on X and θO(X) = PSO(X) = τ . Thus = PS-converges (resp., θ-converges) to b,
but = does not Pp-converges to b, because the set {b} is Pp-open containing b, and there is no an F ∈ = such that
F ⊆ {b}. Also, = PS-accumulates (resp., θ-accumulates) to d, but = does not Pp-accumulates to d, because the set
{d} is Pp-open containing d, and there exists an F ∈ = such that F ∩ {d} = φ.

Proposition 27. Let = be a filter base on X and E be any Pp-closed set containing x ∈ X. If there exists an F ∈ =
such that F ⊆ E, then = Pp-converges to a point x.

Proof. Let V be any Pp-open set containing x ∈ X, then for each x ∈ V , there exists a Pp-closed set E such that
x ∈ E ⊆ V . By hypothesis, there exists an F ∈ = such that F ⊆ E ⊆ V which implies that F ⊆ V . Hence =
Pp-converges to a point x.

Proposition 28. Let = be a filter base on X and E be any Pp-closed set containing x. If there exists an F ∈ =
such that F ∩ E 6= φ, then = Pp-accumulates to a point x.

Proof. The proof is similar to the Proposition 27.

Theorem 29. If a function f : X → Y is Pp-continuous (resp., almost Pp-continuous), then for each point x ∈ X
and each filter base = in X Pp-converging to x, the filter base f(=) is convergent (resp., δ-convergent) to f(x).

Proof. Suppose that x ∈ X and = is any filter base in X which Pp-converges to x. By the Pp-continuity (resp.,
almost Pp-continuity) of f , for any open set V in Y containing f(x), there exists U ∈ PpO(X) containing x such
that f(U) ⊆ V (resp., f(U) ⊆ Int(Cl(V ))). But = is Pp-convergent to x in X, then there exists an F ∈ = such
that F ⊆ U . It follows that f(F ) ⊆ V (resp., f(F ) ⊆ Int(Cl(V ))). This means that f(=) is convergent (resp.,
δ-convergent) to f(x).

Definition 30. A space X is said to be Pp-compact if for every Pp-open cover {Vα : α ∈ ∆} of X, there exists a
finite subset ∆0 of ∆ such that X = ∪{Vα : α ∈ ∆0}.

Proposition 31. If every preclosed cover of a space X has a finite subcover, then X is Pp-compact.

Proof. Let {Vα : α ∈ ∆} be any Pp-open cover of X, then for each x ∈ X, there exists α ∈ ∆0, x ∈ Vα(x), there exists
a preclosed set Fα(x) such that x ∈ Fα(x) ⊆ Vα(x). therefore, the family {Fα(x) : x ∈ X} is a preclosed cover of X,
then by hypothesis, this family has a finite subcover such that X = {Fα(xi) : i = 1, 2, , n} ⊆ { Vα(xi) : i = 1, 2, , n}.
Therefore, X = {Vα(xi) : i = 1, 2, , n}. Hence, X is Pp-compact.

Lemma 32. If X is strongly compact, then it is Pp-compact.

Proof. The proof is straightforward because every Pp-open set is preopen.

The converse of lemma 32 is not true as shown by the next example.

Example 33. Let R be the set of real numbers with topology τ = {φ,G ⊆ R such that 1 ∈ G}. Hence, X is
Pp-compact, but it is not strongly compact.

Lemma 34. Every Pp-compact space is θ-compact.

Proof. Obvious from the fact that every θ-open set is Pp-open.
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The converse of Lemma 34 is not true as shown by the next example.

Example 35. Let R be the set of real numbers with topology τ = {φ,R, {1},R \ {1}}. Then X is θ-compact, but it
is not Pp-compact.

From lemma 32 and lemma 34, the following diagram is obtained:

strongly compact

��

// Pp-compact

��
compact // θ-compact

Diagram 3.1

In general, Pp-compact spaces and compact spaces are not comparable as shown by the following two examples.

Example 36. In Example 33, X is Pp-compact, but it is not compact.

Example 37. In Example 35, X is compact, but it is not Pp-compact.

Proposition 38. Let X be a locally indiscrete space. If X is Pp-compact, then it is PS-compact.

Proof. Follows from Proposition 3 (3) and (4).

The converse of Proposition 38 is not true as shown by the next example.

Example 39. In Example 35, X is PS-compact, but it is not Pp-compact.

Lemma 40. Let X be either a pre-regular or a locally indiscrete space. If X is Pp-compact, then it is compact.

Proof. Follows from Proposition 3 (2) and (4).

Lemma 41. Every locally indiscrete and strongly compact space is Pp-compact.

Proof. Follows from Proposition 3 (5).

Theorem 42. Every pre-T1 and Pp-compact space is strongly compact.

Proof. Suppose that X is a pre-T1 and a Pp-compact space. Let {Vα : α ∈ ∆} be any preopen cover of X. Then
for every x ∈ X, there exists α(x) ∈ ∆ such that x ∈ Vα(x). Since X is pre-T1, by Proposition 3 (1), the family
{Vα : α ∈ ∆} is a Pp-open cover of X. Since X is Pp-compact, there exists a finite subset ∆0 of ∆ in X such that
X = ∪{Vα : α ∈ ∆0}. Hence, X is strongly compact.

Proposition 43. If X is a pre-regular and p-closed space, then it is Pp-compact.

Proof. Let {Vα : α ∈ ∆} be any Pp-open cover of X, then Vα is preopen for each α ∈ ∆. Since X is a pre-regular,
by lemma 2, for each x ∈ X and Vα(x), there exists a preopen set Gx such that x ∈ Gx ⊆ pCl(Gx) ⊆ Vα(x).
Then the family {Gx : x ∈ X} is a preopen cover of X. Since X is a p-closed space, then there exists a subfamily
{Gxi

: i = 1, 2, ..., n} such that X = ∪ni=1pCl(Gxi
) ⊆ ∪ni=1Vα(xi). Thus X is Pp-compact.

Theorem 44. For any space X. The following statements are equivalent:

1. X is Pp-compact,

2. For any Pp-open cover {Vα : α ∈ ∆} of X, there exists a finite subset ∆0 of ∆ such that X = ∪{Vα : α ∈ ∆0},

3. Every maximal filter base = in X Pp-converges to some point x ∈ X,

4. Every filter base = in X Pp-accumulates to some point x ∈ X,
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5. For every family {Fα : α ∈ ∆} of Pp-closed subsets of X such that ∩{Fα : α ∈ ∆} = φ, there exists a finite
subset ∆0 of ∆ such that ∩{Fα : α ∈ ∆0} = φ.

Proof. (1)⇒ (2) Straightforward.
(2) ⇒ (3) Suppose that for every Pp-open cover {Vα : α ∈ ∆} of X, there exists a finite subset ∆0 of ∆ such that
X = ∪{Vα : α ∈ ∆0} and let = = {Fα : α ∈ ∆} be a maximal filter base. Suppose that = does not Pp-converges to
any point of X. Since = is maximal, by Corollary 19, = does not Pp-accumulates to any point of X. This implies
that for every x ∈ X there exist Pp-open set Vx and Fα(x) ∈ = such that Fα(x) ∩ Vx = φ. The family {Vx : x ∈ X}
is a Pp-open cover of X and by hypothesis, there exists a finite number of points x1, x2, ..., xn of X such that X =
∪{V(xi) : i = 1, 2, ..., n}. Since = is a filter base on X, there exists a F0 ∈ = such that F0 ⊆ ∩{Fα(xi) : i = 1, 2, ..., n}.
Hence, F0 ∩ Vα(xi) = φ for i = 1, 2, ..., n which implies that F0 ∩ (∪{V(xi) : i = 1, 2, ..., n}) = F0 ∩X = φ. Therefore,
we obtain F0 = φ. Which contradicts the fact that = 6= φ. Thus = is Pp-converges to some point x ∈ X.
(3) ⇒ (4) Let = be any filter base on X. Then, there exists a maximal filter base =0 such that = ⊆ =0. By
hypothesis, =0 Pp-converges to some point x ∈ X. For every F ∈ = and Pp-open set V containing x, there exists
F0 ∈ =0 such that F0 ⊆ V . Hence φ 6= F0 ∩ F ⊆ V ∩ F . This shows that = Pp-accumulates at x.
(4) ⇒ (5) Let {Fα : α ∈ ∆} be a family of Pp-closed subsets of X such that ∩{Fα : α ∈ ∆} = φ. If possible,
suppose that every finite subfamily ∩{Fαi

: i = 1, 2, ..., n} 6= φ. Therefore, = = A ⊆ Y ⊆ X form a filter base on
X. By hypothesis, = Pp-accumulates to some point x ∈ X. This implies that for every Pp-pen set V containing x,
Fα ∩ V 6= φ, for every Fα ∈ = and every α ∈ ∆. Since x /∈ ∩Fα, there exist an α0 ∈ ∆ such that x /∈ Fα0

. Hence,
X \ Fα0 is a Pp-open set containing x and Fα0 ∩X \ Fα0 = φ. Which contradicts the fact that = Pp-accumulates to
x. Therefore, the assertion in (5) is true.
(5)⇒ (1) Let {Vα : α ∈ ∆} be a Pp-open cover of X. Then {X\Vα : α ∈ ∆} is a family of Pp-closed subsets of X such
that ∩{X \ Vα : α ∈ ∆} = φ. By hypothesis, there exists a finite subset ∆0 of ∆ such that ∩{X \ Vα : α ∈ ∆0} = φ.
Hence, X = ∪{Vα : α ∈ ∆0}. This shows that X is Pp-compact.

4 Pp-Sets and Pp-Compact Subspaces

In this section, new classes of space called Pp-set and Pp-compact subspace are introduced.

Definition 45. A subset A of a space X is said to be Pp-set (resp., Pp-compact subspace) if for every cover
{Vα : α ∈ ∆} of A by Pp-open subsets of X (resp., by Pp-open subsets of A), there exists a finite subset ∆0 of
∆ such that A ⊆ ∪{Vα : α ∈ ∆0} (resp., A = ∪{Vα : α ∈ ∆0}).

Lemma 46. A subset A of a space X is a Pp-set (resp., a Pp-compact subspace) if and only if for every cover of A
by Pp-open sets of X (resp., by Pp-open sets of A) has a finite subcover.

Proof. The proof follows directly from Definition 45.

Now several equivalent conditions to Pp-sets (resp., Pp-compact subspaces) of spaces are given as well as giving
some other conditions such that each of which makes a given space a Pp-compact space.

Theorem 47. Let A be a subset of a space X. If every cover of A by preclosed subsets of X (resp., by preclosed
subsets of A) has a finite subcover, then A is a Pp-set (resp., a Pp-compact subspace).

Proof. Let {Vα : α ∈ ∆} be a cover of A by Pp-open subset of X (resp., by Pp-open subsets of A). Then for each
x ∈ X, there exists α ∈ ∆0, x ∈ Vα(x), there exists a preclosed set Fα(x) such that x ∈ Fα(x) ⊆ Vα(x). Hence,
the family {Fα(x) : x ∈ X} is a cover of A by preclosed subsets of X (resp., by preclosed subsets of A). Then
by hypothesis, this family has a finite subcover such that A ⊆ ∪{Fα(xi) : i = 1, 2, , n} ⊆ ∪{Vα(xi) : i = 1, 2, , n}
(resp., A = {Fα(xi) : i = 1, 2, , n} ⊆ ∪{Vα(xi) : i = 1, 2, , n}. Therefore, A ⊆ ∪{Vα(xi) : i = 1, 2, , n} (resp.,
A = ∪{Vα(xi) : i = 1, 2, , n}. Hence, A is Pp-set (resp., Pp-compact subspace).

Theorem 48. For any space X. The following statements are equivalent:

1. A is Pp-set (resp., Pp-compact subspace),

2. Every maximal filter base = on X which meets A Pp-converges to some point of A,

3. Every filter base = on X which meets A Pp-accumulates to some point x ∈ X,
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4. For every family {Fα : α ∈ ∆} of Pp-closed subsets of X such that [∩{Fα : α ∈ ∆}] ∩ A = φ, there exists a
finite subset ∆0 of ∆ such that [∩{Fα : α ∈ ∆0}] ∩A = φ.

Proof. Similar to Theorem 44.

Theorem 49. A space X is Pp-compact if and only if every proper Pp-closed set of X is Pp-set.

Proof. Necessity: Let F be any proper Pp-closed set of X. Let {Vα : α ∈ ∆} be a cover of F and Vα ∈ PpO(X) for
every α ∈ ∆. Since F is a Pp-closed set, then X \F is a Pp-open set. Thus the family {Vα : α ∈ ∆}∪ (X \F ) is a Pp-
open cover of X. Since X is Pp-compact, there exists a finite subset ∆0 of ∆ such that X = ∪{Vα : α ∈ ∆0}∪(X \F ).
Therefore, we obtain F ⊆ ∪{Vα : α ∈ ∆0}. Hence, F is Pp-set.
Sufficiency: Let {Vα : α ∈ ∆} be a cover of X and Vα ∈ PpO(X) for every α ∈ ∆. Suppose that X 6= Vα0 6= φ for
every α0 ∈ ∆. Then X \ Vα0

is a proper Pp-closed subset of X. Therefore, by hypothesis, there exists a finite subset
∆0 of ∆ such that X \ Vα0

⊆ ∪{Vα : α ∈ ∆0}. Therefore, we obtain X = ∪{Vα : α ∈ ∆0 ∪ {α0}}. Which shows that
X is Pp-compact.

Theorem 50. If a space X is Pp-compact and A is both preclopen and Pp-closed subset of X, then A is a Pp-compact
subspace.

Proof. Let {Aα : α ∈ ∆} be any cover of A by Pp-open set of A. Since A is preclopen, by Lemma 4 (1), Aα ∈ PpO(X)
for each α ∈ ∆. Since A is a Pp-closed subset of X, then (X \ A) ∈ PpO(X) and {Aα : α ∈ ∆} ∪ (X \ A) = X and
{Aα : α ∈ ∆} ∪ (X \ A) forms a Pp-open cover of X. Since X is Pp-compact, there exists a finite subset ∆0 of ∆
such that X = ∪{Aα : α ∈ ∆0} ∪ (X \A). Hence, A = ∪{Aα : α ∈ ∆0}. Therefore, A is a Pp-compact subspace.

Lemma 51. If a space X is Pp-compact and A is both pre-regular open and Pp-closed subset of X, then A is A
Pp-compact subspace.

Proof. Follows from Theorem 50 and Lemma 4 (1).

Theorem 52. If there exists either a proper α-open and a proper preclosed subset A of a space X such that A and
X \A are Pp-compact subspace, then X is also Pp-compact.

Proof. Let {Vλ : λ ∈ Λ} be any Pp-open cover of X. Since A is an α-open and a preclosed subset of X, then for
every λ ∈ Λ, by Lemma 4 (2), we have A ∩ Vλ ∈ PpO(A). Therefore, {A ∩ Vλ : λ ∈ Λ} is a Pp-open cover of A.
Since A is a Pp-compact subspace, there exists a finite subset Λ0 of Λ such that A = ∪{A∩ Vλ : λ ∈ Λ0}. Therefore,
we have A ⊆ ∪{Vλ : λ ∈ Λ0}. Since A is an α-open and a preclosed subset of X, then X \ A is also an α-open
and a preclosed. By the same way, we can find a finite subset Λ1 of Λ such that X \ A ⊆ ∪{Vλ : λ ∈ Λ1}. Hence
X = ∪{Vλ : λ ∈ Λ0 ∪ Λ1}. This shows that X is Pp-compact.

Theorem 53. Let A be any subset of a space X such that A and X \A are Pp-set of X. Then X is also Pp-set.

Proof. Let {Vα : α ∈ ∆} be any Pp-open cover of X = A ∪ X \ A. Then {Vα : α ∈ ∆} is an Pp-open cover
of A and X \ A. Therefore, there exist finite subsets ∆0 and ∆1 of ∆ such that A ⊆ ∪{Vα : α ∈ ∆0} and
X \A ⊆ ∪{Vα : α ∈ ∆1}. Thus X = A ∪X \A ⊆ ∪{Vα : α ∈ ∆0 ∪∆1}. This completes the proof.

Theorem 54. If a preclopen set G of a space X is a Pp-set, then G is a Pp-compact subspace.

Proof. Suppose that G is a preclopen and a Pp-set. Let {Vα : α ∈ ∆} be a cover of G and Vα ∈ PpO(G) for every
α ∈ ∆. Since G is a preclopen set, then by Lemma 4 (1), we have Vα ∈ PpO(X) for every α ∈ ∆. Since G is Pp-set,
there exists a finite subset ∆0 of ∆ such that G ⊆ ∪{Vα : α ∈ ∆0}, which implies that G is Pp-compact subspace.

Corollary 55. If a pre-regular open set G of a space X is a Pp-set, then G is a Pp-compact subspace.

Proof. This is an immediate consequence of Theorem 54 and Lemma 4 (1).

Theorem 56. If G is an α-open, a Pp-closed of a space X and G is Pp-compact subspace, then G is Pp-set.
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Proof. Suppose that G is an α-open and a Pp-closed, and {Vλ : λ ∈ Λ} be a cover of G and Vα ∈ PpO(X) for every
λ ∈ Λ. Since G is an α-open and a Pp-closed, then for every λ ∈ Λ, by Lemma 4 (2), we have G ∩ Vλ : λ ∈ PpO(G).
Therefore, the family {G ∩ Vλ : λ ∈ Λ} is a Pp-open cover of G. Since G is a Pp-compact subspace, there exists a
finite subset Λ0 of Λ such that G = ∪{G ∩ Vλ : λ ∈ Λ0}. Therefore, G ⊆ ∪{Vλ : λ ∈ Λ0}, which implies that G is
Pp-set.

Theorem 57. Let A and B be subsets of a space X. If A is Pp-closed and B is Pp-set, then A ∩B is Pp-set.

Proof. Let {Vα : α ∈ ∆} be any cover of A ∩ B by Pp-open subsets of X. Since A is a Pp-closed set, then X \ A is
Pp-open. Thus B ⊆ ∪{Vα : α ∈ ∆}∪ (X \A) and the family {Vα : α ∈ ∆}∪ (X \A) is a Pp-open cover of B. Since B
is a Pp-set, then there exists a finite subset ∆0 of ∆ such that B ⊆ ∪{Vα : α ∈ ∆0} ∪ (X \A). Therefore, we obtain
that A ∩B ⊆ ∪{Vα : α ∈ ∆0}. Hence, A ∩B is a Pp-set.

Corollary 58. The finite union of a Pp-set (resp., a Pp-compact subspace) of X is a Pp-set (resp., a Pp-compact
subspace).

Proof. Straightforward.

Theorem 59. Let B be Pp-set of X and G be θ-open subset of a space X such that G ⊆ B. Then, B \G is Pp-set.

Proof. Obvious.

5 Results on Images of Pp-Compactness

Theorem 60. If a function f : X → Y is Pp-continuous (resp., almost Pp-continuous) and A is Pp-set, then f(A)
is compact (resp., N -closed) relative to Y .

Proof. Let {Gα : α ∈ ∆} be any cover of f(A) by open sets of Y . For each x ∈ A, there exists an α(x) ∈ ∆ such that
f(x) ∈ Gα(x). Since f is Pp-continuous (resp., almost Pp-continuous), there exists a Pp-open set Ux of X containing
x such that f(Ux) ⊆ Gα(x) (resp., f(Ux) ⊆ Int(Cl(Gα(x)))). Then the family {Uα : x ∈ A} is a Pp-open cover of
A. For some finite subset A0 of A, we have A ⊆ ∪{Ux : x ∈ A0}. Therefore, f(A) ⊆ ∪ {Gα(x) : x ∈ A0} (resp.,
f(A) ⊆ ∪{Int(Cl(Gα(x))) : x ∈ A0}). This shows that f(A) is compact (resp., N -closed) relative to Y .

Corollary 61. If f : X → Y is a Pp-continuous (resp., almost Pp-continuous) surjection function and X is a
Pp-compact, then Y is compact (resp., nearly compact)

Proposition 62. If f : X → Y is a Pp-continuous (resp., almost Pp-continuous), A is a Pp-set and F is a Pp-closed
subset of X, then f(A ∩ F ) is compact (resp., N -closed) relative to Y .

Proof. Follows from Theorem 60 and Theorem 57.

Proposition 63. If f : X → Y is a precontinuous (resp., almost precontinuous) surjection function and X is a
pre-T1 and Pp-compact space, then Y is compact (resp., nearly compact).

Proof. Follows from Theorem 60 and Theorem 42.

Proposition 64. If f : X → Y is a precontinuous (resp., almost precontinuous) surjection function and X is a
locally indiscrete and Pp-compact space, then Y is compact (resp., nearly compact).

Proof. Follows from Theorem 60 and Lemma 41.

Proposition 65. If f : X → Y is a continuous (resp., almost Pp-continuous) surjection function and X is a locally
indiscrete and Pp-compact space, then Y is compact (resp., nearly compact).

Proof. Follows from Theorem 60 and Lemma 40.

Proposition 66. If f : X → Y is a continuous (resp., almost Pp-continuous) surjection function and X is a
pre-regular and Pp-compact space, then Y is compact (resp., nearly compact).
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Proof. Follows from Theorem 60 and Lemma 40.

Theorem 67. If f : X → Y is a continuous and open function. If A is a Pp-set, then f(A) is a Pp-set.

Proof. Let {Vα : α ∈ ∆} be any cover of f(A) by Pp-open sets of Y . Since f is continuous and open function. By
Theorem 13, {f−1(Vα) : α ∈ ∆} is a cover of A by Pp-open sets of X. Since A is Pp-set, there exists a finite subset
∆0 of ∆ such that A ⊆ ∪{f−1(Vα) : α ∈ ∆0}. Thus, we have f(A) ⊆ ∪{Vα : α ∈ ∆0}. This shows that f(A) is
Pp-set.

Corollary 68. If X is a Pp-compact space and f : X → Y is a continuous and open surjection function, then Y is
Pp-compact.

6 Characterization of Pp-compact spaces

Definition 69. A point x in X is said to be Pp-complete accumulation point of a subset A of X if Card(A ∩ U) =
Card(A) for each U ∈ PpO(X), where Card(A) denotes the cardinality of A.

Definition 70. In a space X, a point x is said to be a Pp-adherent point of a filter base = on X if it lies in the
Pp-closure of all sets of =.

Theorem 71. A space X is Pp-compact if and only if each infinite subset of X has a Pp-complete accumulation
point.

Proof. Let the space X be Pp-compact and S be an infinite subset of X. Let K be the set of points x in X which
are not Pp-complete accumulation points of S. Now it is obvious that for each point x in K, we are able to find
U(x) ∈ PpO(X,x) such that Card(S ∩ U(x)) 6= Card(S). If K is the whole space, then E = {U(x) : x ∈ X} is a Pp-
open cover of X. By hypothesis, X is Pp-compact. Therefore, there exists a finite subcover Ψ = {U(xi) : i = 1, 2, ..., n}
such that S ⊆ ∪{U(xi) ∩ S : i = 1, 2, ..., n}. Then, Card(S) = max {Card(U(xi) ∩ S) : i = 1, 2, ..., n}, which does
not agree with what we assumed. This implies that S has a Pp-complete accumulation point. Now assume that X
is not a Pp-compact and that every infinite subset S of X has a Pp-complete accumulation point in X. It follows
that there exists a cover Θ with no finite subcover. Set δ=min{Card(Ξ) : Ξ ⊆ Θ, where Ξ is a Pp-open cover of
X}. Fix Ψ ⊆ Θ, for which Card(Ψ) = δ and ∪{U : U ∈ Ψ} = X. Let N denotes the set of natural numbers, then
by hypothesis δ ≥ Card(N) by well-ordering of Ψ. By some minimal well-ordering ” ∼ ” , suppose that U is any
member of Ψ. By minimal well-ordering ” ∼ ”, we have Card({V : V ∈ Ψ, V ∼ U}) < Card({V : V ∈ Ψ}). Since Ψ
can not have any subcover with cardinality less that δ, then for each U ∈ Ψ, we have X 6= ∪{V : V ∈ Ψ, V ∼ U}.
For each U ∈ Ψ, choose a point x(U) ∈ X \ ∪{V ∪ {x(V )} : V ∈ Ψ, V ∼ U}. We are always able to do this, if
not, one can choose a cover of smaller cardinality from Ψ. If H = {x(U) : U ∈ Ψ}, then to finish the proof, we will
show that H has no Pp-complete accumulation point in X. Suppose that z is a point of the space X. Since Ψ is a
Pp-open cover of X, then z is a point of some set W in Ψ. By the fact that U ∼ W , we have x(U) ∈ W . It follows
that T = {U : U ∈ Ψ and x(U) ∈ W} ⊆ {V : V ∈ V ∼ W}. But Card(T ) < δ. Therefore, Card(H ∩W ) < δ. But
Card(H) = δ ≥ Card(N), since for two distinct points U and W in Ψ, we have x(U) 6= x(W ). This means that H
has no Pp-complete accumulation point in X which contradicts our assumptions. Therefore, X is a Pp-compact.

Theorem 72. For a space X, the following are equivalent:

1. X is Pp-compact.

2. Every net in X with well-ordered directed set as its domain accumulates to some point of X.

Proof. (1) ⇒ (2) Suppose that X is a Pp-compact and ξ = {xα : α ∈ ∆} a net with a well-ordered set ∆ as
domain. Assume that ξ has no Pp-adherent point in X. Then for each point x in X, there exist V(x) ∈ PpO(X,x)
and an α(x) ∈ ∆ such that V(x) ∩ {xα : α ≥ α(x)} = φ. This implies that {xα : α ≥ α(x)} is a subset of
X \ V(x). Then the collection ω = {V(x) : x ∈ X} is a Pp-open cover of X. By hypothesis of theorem, X is Pp-
compact and so ω has a finite subfamily {V(xi) : i = 1, 2, ..., n} such that X = ∪{V(xi) : i = 1, 2, ..., n}. Suppose
that the corresponding elements of ∆ be {α(xi)} where i = 1, 2, , n, since ∆ is well-ordered and {α(xi)} where
i = 1, 2, , n is finite. The largest elements of {α(xi)} exists. Suppose it is {α(xi)}. Then for γ ≥ {α(xi)}. We have
{xδ : δ ≥ γ} ⊆

⋂n
i=1(X \ V(xi)) = X \

⋃n
i=1 V(xi) = φ. Which is impossible. This shows that ξ has at least one

Pp-adherent point in X.
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(2) ⇒ (1) Now, it is enough to prove that each infinite subset has a Pp-complete accumulation point by utilizing
above theorem. Suppose that S ⊆ X is an infinite subset of X. According to Zorns Lemma, the infinite set S can
be well-ordered. This means that we can assume S to be a net with a domain which is a well ordered index set. It
follows that S has Pp- adherent point z. Therefore, z is a Pp-complete accumulation point of S. This shows that X
is a Pp-compact.

Theorem 73. A space X is a Pp-compact if and only if each family of a Pp-closed subsets of X with the finite
intersection property has a non-empty intersection.

Proof. Given a collection ω of subsets of X. Let ν = {X \$ : $ ∈ ω} be the collection of their complements. Then
the following statements hold.

1. ω is the collection of Pp-open sets if and only if ν is a collection of Pp-closed sets.

2. the collection ω covers of X if and only if the intersection
⋂
υ∈ν(ν) of all the elements of ν is non empty.

3. The finite sub collection {ωn, .., ωn} of ω covers X if and only if the intersection of the corresponding elements
υi = X \ ωi of ν is empty.
The statement (1) is trivial. While the statement (2) and (3) follows from De-Morgan Law X \

⋃
α∈j(να) =⋂

α∈j(X \ να). The proof of theorem now proceeds in two steps. Taking the contra positive of the theorem
and the complement. The statement X is a Pp-compact is equivalent to: Given any collection of ω Pp-open
subsets of X, if ω covers X, then some finite sub collection of ω covers X. This statement is equivalent to its
contra positive, Which is the following.
Given any collection ω of Pp-open sets, if no finite sub collection ω of covers X, then ω does not cover X.
Letting ν be as earlier, the collection {X \W : W ∈ ω}, and applying (1) to (3), we see that this statement is
in turn equivalent to the following.
Given any collection ν of Pp-closed sets, if every finite intersection of elements of ν is non empty. This is just
the condition of our theorem.

Theorem 74. A space X is a Pp-compact if and only if each filter base in X has at least one a Pp-adherent point.

Proof. Suppose that X is Pp-compact and = = {Fα : α ∈ ∆} is a filter base in it. Since all finite intersections of
Fα’s are nonempty. It follows that all finite intersections of PpCl(Fα)’s are also nonempty. Now, it follows from
Theorem 73 that

⋂
α∈∆ PpCl(Fα) is nonempty. This means that = has at least one Pp- adherent point. Now,

suppose that = is any family of Pp-closed sets. Let each finite intersection be nonempty. The set Fα with their
finite intersection establish the filter base =. Therefore, = Pp-accumulates to some point z in X. It follows that
z ∈

⋂
α∈∆ Fα. Now, we have by Theorem 72, that X is a Pp-compact.

Theorem 75. A space X is a Pp-compact if and only if each filter base on X, with at most one Pp-adherent point,
is a Pp-convergent.

Proof. Suppose that X is a Pp-compact, x is a point of X, and = is a filter base on X. The Pp-adherent of = is a
subset of {X}. Then the Pp-adherent of = is equal to {X}, by Theorem 74. Assume that there exists a V ∈ PpO(X,x)
such that for all F ∈ =, F ∩ (X \ V ) is nonempty. Then Ψ = {F \ V : F ∈ =} is a filter base on X. It follows that
the Pp-adherence of Ψ is nonempty. However,

⋂
F∈= PpCl(F \ V ) ⊆ (

⋂
F∈= PpClF )∩ (X \ V ) = {X} ∩ (X \ V ) = φ.

But this is a contradiction. Hence, for each V ∈ PpO(X,x), there exist F ∈ = with F ⊆ V . This shows that = Pp-
converges to x. To prove the converse, it suffices to show that each filter base in X has at least one Pp-accumulation
point. Assume that = is a filter base on X with no Pp-adherent point. By hypothesis = Pp-converges to some point z
in X. Suppose that Fα is an arbitrary element of =. Then for each V ∈ PpO(X, z), there exists an Fβ ∈ = such that
Fβ ⊆ V . Since = is a filter base, there exists a γ such that Fγ ⊆ Fα ∩ Fβ ⊆ Fα ∩ V , where Fγ is a nonempty. This
means that Fα ∩ V is nonempty for every V ∈ PpO(X, z) and correspondingly for each α, z is a point of PpCl(Fα).
It follows that z ∈

⋂
α PpCl(Fα). Therefore, z is Pp-dherent point of =. Which is contradiction. This shows that X

is Pp-compact.
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