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Abstract. The main objective of this paper is to obtain a new accurate approximate solutions for a kind of ordinary dif-
ferential equations called multipoint boundary value problems by using simple modification of optimal homotopy asymptotic
method (OHAM). This procedure is a well-performance for calculating a better approximate solutions using one-order of
approximation comparing with other methods which need higher order of approximations to gives the same results. Some
examples are presented to testify the accuracy and applicability of this procedure. Comparisons are made between the present
procedure and the other methods.
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1 Introduction

Multi-point boundary value problems (BVPs) appear in a many fields of applied mathematics and physics. For
instance, the vibrations of a guy wire of uniform cross section composed of N parts different densities can be described
by a multi-point BVP which was explained by Moshiinsky [1]. In fact, Multi-point BVPs arise in the mathematical
modelling of viscoelastic and inelastic flows, deformation of beams and plate deflection theory [2]. Many approximated
analytical or numerical methods have been used to find solutions of multi-point BVPs, Urabe [3] applied Chebyshev
series to approximate solutions of nonlinear first-order multi-point BVPs, An efficient technique to find semi-analytical
solutions for higher order multi-point boundary value problems is presented to solve general multi-point BVPs by
Kheybari and Darvishi [4], Also, based on the differential transform method an efficient algorithm was successfully
applied to obtain approximate solutionof multi-point boundary value problems by Xie [5].

Real world physical problems are generally described by differential equations especially BVPs or Multipoint
BVPs, various numerical or approximated method were utilized for solving these type of differential equations,
like Finite Difference Method [6] and homotopy perturbation and variational iteration method [7], A six-step Block
Unification [§] and so on. Many researchers have shown a great deal of interest on the approximate analytical solution
for a wide classes of differential eqautions in the last few years using different procedures, one of the well-known
powerful and efficient procedures for solving different types of differential equations is OHAM. In 2008, Marinca and
Herisanu suggested the so-called optimal homotopy asymptotic method (OHAM) based on the homotopy equation
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in a series of papers [0, [I0, [I1] for the approximate solutions of nonlinear problems. This procedure give us with
a convenient way to control the convergence of approximation series and demonstrates its validity and potential
efficiency to solve a wide class of problems in applied science and engineering and also valid for small parameters.
In the last few years, OHAM and its modifications has been applied successfully to solve many types of differential
equations [12}, 13} 14, [15], 16} 17, 18} 19 20, 21].

In this paper,we will expand the application of OHAM by using simple modification to obtain a new accurate
approximate analytic solution of multipoint boundary value problems throughout only one-order of approximation
and comparing it with higher order of approximation using the same method [2I]. The procedure is directly applied
without any linearization and discretizations or splitting the non-homogeneous term. The structure of this paper is
formulated as follows: Section 2 is devoted to the analysis of the proposed method, in Section 3, two examples are
employed to illustrate the accuracy and computational efficiency of this procedure, and finally, conclusions are given
in the last section.

2 Method of Solution

To explain the basic idea of OHAM [9] 22], we consider the following differential equation

L(u(z)) + g(z) + N(u(z)) =0, B (u, 31;) =0, (1)

where L is the chosen linear operator, N is the linear or nonlinear operator, u(x) is an unknown function, x denotes
an independent variable, g(z) is a known function and B is a boundary operator.
According to the basic idea OHAM we construct a homotopy h(v(z,p),p) : R x [0,1] — R which satisfies

(1 =p)[L(v(z,p)) —uo(x)] = H(p)[L(v(z,p))+ g(x) + N(v(z,p))],
B(U(x,p),%g?) = 0, (2)

where z € R and p € [0, 1] is an embedding parameter, H(p) is a nonzero auxiliary function for p # 0, H(0) = 0 and
v(z,p) is an unknown function. Obviously, when p = 0 and p = 1 it holds that v(x,0) = up(x) and v(z,1) = u(zx)
respectively. Thus, as p varies from 0 to 1, the solution v(x,p) approaches from wug(x) to u(x) where ug(zx) is the
initial guess that satisfies the linear operator and the boundary conditions

dUO
L =0, B ,— | =0. 3
(o) =0, 5 (un. 32 0
The auxiliary function H (p) will be chosen in the following form
k
H(p) =) (Cpxa™ ) xp, (4)
m=1
where C1,C5,C3, ... are called the convergent control parameters which can be determined later.

To get an approximate solution, we expand v(x, p, C;) in Taylor’s series about p in the following manner,

U(‘Tvpa Cz) :UO(‘T)+Zuk(xacl702w"vck)pk' (5)
k=1

Substituting Eq. into Eq. and equating the coefficient of like powers of p, we obtain the following linear
equations. The zeroth-order problem is given by Eq., the first-order problem is given in the following form

du
Ll () + o) = CiVo(un(o), 5 (w0, G2 ) =0, ()
where N, (ug (), u1 (x),...,un (z)) is the coefficient of p™ in the expansion of N(v(z,p)) about the embedding
parameter p.
N(v(z,p,Ci)) = No(uo(®)) + > Non(uo(@), ur (@), - .., (2))p™. (7)

m=1
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It has been observed that the convergence of the series depends upon the auxiliary constants Cy,Cs,Cs,.... If
it is convergent at p = 1, one has
o0
v(z, C;) :uo(:b)+Zuk(x7Cl,C’2,...,Ck). (8)
k=1

The result of the mth-order approximation is given

m

1](33,(]1,02, Cs,.. .,Cm) = UQ(.’L‘) + Zui(x,Cl,Cz, .. ,Cl) (9)

i=1
Substituting @ into yields the following residual
R(.Z',Cl,CQ,Cg,...,Cm) = L(a<x701,02a03a"'70m)>+g(m)
+N(ﬂ ($701,CQ,C377Cm)) (].0)

If R =0, then u will be the exact solution. Generally such a case will not arise for nonlinear problems, but we can
minimize the functional

b
J(Cl,Cg,Cg,...,Cm)z/ R*(z,C1,C,Cs,...,Cp)du, (11)
where a and b are the endpoints of the given problem. The unknown constants C; (i = 1,2,3,...,m) can identified
from the conditions
aJ aJ aJ
—r 2 ... .= . 12
oC, 00, 0Cn, (12)

With these constants known, the approximate solution (of order m) is well determined.

3 Numerical Examples

To illustrate the validity and capability of the presented procedure, we shall consider the following two examples of
multipoint two-points BVPs.
3.1 Example 1
Consider the following third order linear multipoint BVP [21], 23].
u"(x) — k2 () +1=0, «/(0)=0, «'(1)=0, u(0.25)=0. (13)
The exact solution of this problem is given by

u(z) = % (mh(g - smh((m))> + %(I - %)
k

—|—$ <cosh(ka:) - cosh(§)> tanh(g) (14)

According to the OHAM formulation described in above section, we construct a homotopy equation in case of the
physical constant k = 5 in the form of

(1—p)[%+u _ H(p)[(’)‘"’zé(xa;;p) _2581]2/1;;1))—’—1]7

B(U(%p),(%(;x’m) = 0. (15)

Now using Eq. when p = 0, it yields the zeroth-order problem as:

ug(x)+1=0, «'(0)=0, «(1)=0, u(0.25)=0. (16)
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which has the solution
up(z) = 0.166667 (—z® + 1.52° — 0.25) . (17)
Now, apply Eq.@ to give the first-order problem as:

w1 (z) = 12.5¢102't 4 12.5¢920 — 12.5¢102° + 12.5¢52° — 12.5¢92° + 12.5¢72°
—12.5¢g2® 4+ 12.5¢2" — 12.5¢72" + 12.5¢52°% — 12.5¢62° + 12.5¢42°
—12.5¢52° + 12.5¢32* — 12.5¢42* + 12.5¢02° — 12.5¢32> 4 12.5¢1 22
—12.5¢c02% —12.5c12 +0, /(0) =0, u/(1)=0, u(0.25)=0. (18)

Substituting the solution of Eq. together with Eq. into Eq. @D with m = 1, yields, the first order-
approximate solution in the following form

(x,Cp,---Co) = 0.00572344c102™ + 0.00728438¢oz'® — 0.00728438¢1 o>
+0.0094697cg2'? — 0.0094697¢co2'? 4 0.0126263¢7 2
—0.0126263csz ' + 0.0173611cg2'® — 0.0173611c72°
+0.0248016¢52” — 0.0248016¢6x” + 0.0372024¢42°
—0.0372024¢52% + 0.0595238¢52" — 0.0595238¢42”
—0.104167¢525 + 0.104167¢32% + 0.0595238¢42:2
+0.0372024¢52% + 0.0248016¢62% + 0.0173611c722
+0.0126263cgz2 + 0.0094697cox + 0.00728438¢10x>
+c2 (0.1041672° — 0.208333z° + 0.208333z% — 0.0472005)
+c1 (0.2083332° — 0.520833z" + 0.5208332 — 0.104167)
—0.0248791¢3 — 0.0145612¢4 — 0.00920371c5 — 0.00616891cg
—0.00432949¢7 — 0.00315271¢s — 0.002366¢9 — 0.00182056¢1¢
+0.166667 (—1.2° + 1.52° — 0.25) (19)

Following the procedure described in section 2 on the domain between a = 0 and b = 1, using the residual error,
R= ﬂm(l’, Cy,--- ClO) — 25&’(55, Cy,--- 7010) + 1. (20)

The least-square method can be applied as

1
J(Cy,04,---Cro) = /deaz (21)
0
and
4 _ 4 _ 4]
dC, dCy  dCyo

Thus, the following optimal values of C;’s are obtained:

C1 = —0.394646, Ch = 0.605372, C3 = —1.03921,
Cy =1.04537, Cs=—1.01292, Cg = 0.720373,

C7 = —0.468559, Cs = 0.209234, Cy = —0.0650757,
Cho = 0.00541865.

By considering these values our approximate solution becomes,

u(x,Ch,---,Cro) = —0.0121071 4 0.09866142% — 0.1666672> + 0.205545x*
—0.2083372° + 0.171312° — 0.12408227 + 0.07657352°
—0.04298852° + 0.02064122'° — 0.008557992:'
40.00259763x% — 0.0005135082'3 + 0.00003101332:'* (22)
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Table 1: Comparison of exact solution and OHAM solution for Example 1 in case of k =5

T Exact OHAM Absolute  Absolute Absolute
Solution  Solution Error  Error [2I] Error [23]

0.0—0.0121071—0.01210712.19 x 10~ '?1.3 x 107196.65 x 10~°
0.2—0.0092222—0.00922221.66 x 107126.99 x 10795.25 x 10~°
0.4—0.0033202—0.00332024.57 x 10~121.07 x 10781.88 x 10~°
0.60.0033202 0.0033202 2.44 x 107'21.07 x 10781.73 x 107
0.80.0092222 0.0092222 7.96 x 10~134.98 x 107°4.98 x 10~
1.00.0121071 0.0121071 2.18 x 107126.35 x 107°6.35 x 10~

Table 2: Comparison of exact solution and OHAM solution for Example 1 in case of k = 10

T Exact OHAM Absolute  Absolute
Solution Solution Error  Error [23]
0.0—0.00400009 —0.00400009 3.61 x 10~113.52 x 10>
0.2—0.00286501 —0.00286501 1.88 x 107103.03 x 10~°
0.4—0.000984164—0.0009841642.10 x 10~191.40 x 10~°
0.60.000984164 0.000984164 9.28 x 10~117.0 x 1076
0.80.00286501  0.00286501 1.49 x 107101.96 x 10°
1.00.00400009  0.00400009  3.79 x 10~112.40 x 107°

When the physical constanr k£ = 10 and following the same procedur as previously appied in case of kK = 5, we obtain
the following first-order approximte solution

u(z,Cy,--,Cro) = 0.00003101332'* — 0.0005135082" 4 0.00259763x"2
—0.00855799z*" + 0.02064122'° — 0.04298852°
+0.07657352° — 0.1240822" + 0.171312° — 0.2083372°
+0.205545z* — 0.1666672° + 0.09866142 — 0.0121071 (23)
Tables 1 and 2 show the comparison between the present solution obtained by using first-order OHAM approxima-
tion and the numerical results obtained from higher-order of approximation using other methods including OHAM

solutions of three-order of approximations.Figl, represents the plots of the first-order OHAM approximation the the
exact one. Runge Kutta method
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3.2 Example 2
Consider the following linear three-point non-local BVP [6],

u"(z) — e"u" (x) +u(x) = 1— e coshx + 2sinhz, (24)
subject to the boundary conditions

u(0.25) = 1 + sinh(0.25), «'(0.25) = cosh(0.25),
u”(0.25) = sinh(0.25), u(0.5) — u(0.75) = sinh(0.5) — sinh(0.75)

Using the method presented in Section 2, we obtain the first-order approximate solutions in the following form:

u(z,01,Cq,C3) = —0.00033812° 4 0.000487162° — 0.0071043327 + 0.004038642°
+0.006732272° — 0.02760362* — 6.8506523 — 5.68059¢ 2>
+11.8151e%x? — 0.177518¢** 2% — 31.42% — 41.1715e *x
—103.409¢%x + 0.843612e%"z — 225.3252 — 97.8443¢ %
+274.61e” — 1.19609¢%" — 174.569 (25)

Table 3: comparison of exact solution and OHAM solution for Example 1.

z Exact OHAM OHAM  Absolute Absolute
Solution Solution  Error Error Error [5]
0.01.0000000.99994595.41 x 10°1.02 x 10~%2.49 x 10~ 6
0.21.20134 1.20134 4.31 x 10775.33 x 10771.95 x 108
0.41.41075 1.41076 9.38 x 10797.60 x 10764.82 x 10~
0.61.63665 1.63672 6.5 x 1075 3.90 x 10753.94 x 1076
0.81.88811 1.88808 2.94 x 107°2.42 x 10763.34 x 1076
1.02.1752 2.17428 9.25 x 10~*3.05 x 10%9.63 x 10~°

The obtained results are reported in Table 3. The performance of this procedure is very good and the result
obtained during one-order of approximation is in a very good agreement to the exact solution comparing with other
methods which needs higher order of approximation. This performance can be easily observed from this Table. The
comparison of the exact solution and the approximate solution are shown in Figure 2.
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Figure 2: Exact and approximate solution using OHAM for Example 2.

Conclusions

In this research study, we proposed a new accurate approximate analytical solution for multipoint BVPs based on
a simple modification of the optimal homotopy asymptotic method (OHAM) and comparing it with the results
obtained by the same method previously and other method in literature. The examples presented in this work leads
to the conclusion that the obtained results are quit accurate and are in a very good agreement with the analytical
solution which is demonstrate and prove that this procedure is explicit, effective and accurate for this type of ordinary
differential equations and can be easily applied to other differential equations.
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