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Abstract

The aim of this article is to introduce a new form for the Laplace transform. This new definition will be considered as
one of the generalizations of the usual (classical) Laplace transform. We employ the new ”Katugampola derivative”, which
obeys classical properties and define Katugampola Laplace transform. We obtain some properties of this transform and find the
relation between the Katugampola Laplace transform and the usual Laplace one.
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1. Introduction

The derivative of non-integral order ”Fractional derivative” is an interesting research topic since it is a
generalization of the classical integer calculus. Several types of fractional derivatives were introduced and
studied by Riemann-Liouville, Caputo, Hadamard, Weyl, and Grünwald-Letnikov; for more details one
can see [4, 6, 7, 8]. Unfortunately all these fractional derivatives fail to satisfy some basic properties of the
classical integer calculus like product rule, quotient rule, chain rule, Roll’s theorem, mean-value theorem
and composition of two functions. Also, those fractional derivatives inherit non-locality and most of them
propose that the derivative of a constant is not zero. Those inconsistencies lead to some difficulties in the
applications of fractional derivatives in physics, engineering and real world problems.

To overcome all the difficulties raised, Khalil et al. [5] introduced and investigated the so called
conformable fractional derivative and also, Katugampola [3] introduced and studied a similar type of
derivative, later called Katugampola derivative and is defined as follows

Definition 1.1 [3] Let f : [0,∞)→ R and t>0 . Then, the Katugampola derivative of f of order α is defined
by

Dαf(t) = lim
ε→0

f(t eεt
−α

) − f(t)

ε
(1.1)
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for t>0 and α ∈ (0, 1] . If f is α−differentiable in some (0, a) , a>0 and lim
t→ 0+

Dα(f)(t) exists, then

Dα(f)(0) = lim
t→ 0+

Dα(f)(t).

Definition 1.2[3] Let α ∈ (n,n+ 1], for some n ∈ N and f be an n−differentiable at t > 0. Then the
α−fractional derivative of f is defined by

Dαf(t) = lim
ε→0

f(n)
(
t eεt

n−α
)
−f(n) (t)

ε
(1.2)

if the limit exists.
Note that Katugampola derivative satisfies product rule, quotient rule, chain rule,. . . etc. and it is con-
sistent in its properties with the classical calculus of integer order. In addition, we have the following
theorem.

Theorem 1.3 Let α ∈ (n,n+ 1], for some n ∈ N and f be an (n+ 1)−differentiable at t > 0. Then,

Dαf(t) = tn+1−αf(n+1) (t) . (1.3)

Proof.

Dαf(t) = lim
ε→0

f(n)
(
t.eε.tn−α

)
− f(n) (t)

ε

= lim
ε→0

f(n)
(
t+ εtn−α+1 + ε2t2n−2α+1

2! + ε3t3n−3α+1

3! + ...
)
− f(n) (t)

ε
.

Let h = ε tn−α+1
[
1 + εtn−α

2! + ε2t2n−2α

3! + ...
]

, so h = ε tn−α+1 [1 +O (ε)] ,

where h→ 0 as ε→ 0. Hence,

Dαf(t) = tn−α+1 lim
h→0

f(n) (t+ h) − f(n) (t)

h
= tn−α+1f(n+1)(t).

2. Katugampola Laplace Transform

Salim, T.O., et al [9] have introduced a new definition of Katugampola Fourier transform which finds very
interesting reputation between mathematicians. Following the same procedure, they continue their work
and define a new Laplace transform called Katugampola Laplace transform. Some basic properties of this
transform are given here. Abdeljawad [1] gave the definition of conformable Laplace transform.

In this section, we introduce and study the relation between Katugampola Laplace transform and the
usual Laplace transform. The Katugampola Laplace transform of some functions are established and then
we obtain a convolution formula for this transform. Remember here the usual Laplace transform to the
function f ,

L{f(x)}(p) = `{f(x)}(p) =

∫∞
0
f(x) e−px dx.

Definition 2.1 Let α ∈ (n, n+ 1] for some n ∈ N and f (t) be a real valued function on [0,∞) . The
Katugampola Laplace transform of f(t) of order α is defined as

Lα{f(t)}(p) = f̃(p) =

∫∞
0
e
−p

tα−n

α−n f(t) tα−n−1 dt. (2.1)
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Theorem 2.2 Let α ∈ (n,n+ 1], for some n ∈ N and f (x) be a real valued function on [0,∞) . Then,

Lα{D
αf(t)}(p) = pLα

{
f(n)(t)

}
(p) − f(n)(0). (2.2)

Proof. By using Definition 2.1 and Theorem 1.3, we have

Lα{D
αf(t)}(p) = Lα

{
tn−α+1f(n+1)(t)

}
(p)

,

=

∫∞
0
e−p

tα−n

α−n tn−α+1f(n+1)(t) tα−n−1 dt

=

∫∞
0
e−p

tα−n

α−n f(n+1)(t) dt.

Now by using integration by parts, we get

Lα{D
αf(t)}(p) = e−p

tα−n

α−n f(n)(t)
∣∣∣∞
0
+ p

∫∞
0
e−p

tα−n

α−n f(n)(t) tα−n−1 dt

= pLα

{
f(n)(t)

}
(p) − f(n)(0).

Corollary 2.3 Let α ∈ (0, 1] , and f : [0, ∞]→ R be α−differentiable real valued function. Then

Lα{D
α(f)(t)}(p) = pLα {f(t)} (p) − f(0). (2.3)

Proof. The proof is directly obtained by letting n = 0 in Theorem 2.2.

Lemma 2.4 Let α ∈
(
k−1
k 1

]
, k ∈ N and u (x, t) be kα−differentiable real valued function. Then,

Lα

{
∂k α

∂ tk α
u (x, t)

}
(p) = pk Lα {u (x, t)} (p) −

k−1∑
m=0

pk−m−1 ∂m α

∂ tm α
u (x, 0) . (2.4)

Proof. We can prove this theorem by mathematical induction on k.
For k = 1, we have

Lα

{
∂α

∂tα
u (x, t)

}
(p) = pLα {u (x, t)} (p) − u (x, 0) ,

which is true by Corollary 2.3 .
Now, assume that the theorem is true for a particular value of k, say r. Then, we have

Lα

{
∂rα

∂ trα
u (x, t)

}
(p) = pr Lα {u (x, t)} (p) −

r−1∑
m=0

pr−m−1 ∂mα

∂ tmα
u (x, 0) .

Now, we need to prove that the Theorem is true for r+ 1, that is

Lα

{
∂(r+1)α

∂t(r+1)αu (x, t)

}
(p) = pr+1 Lα {u (x, t)} (p) −

r∑
m=0

pr−m
∂mα

∂tmα
u (x, 0) .

By using Theorem 2.4 and the assumption, we have

Lα

{
∂(r+1)α

∂t(r+1)αu (x, t)

}
(p) = Lα

{
∂α

∂tα

(
∂rα

∂trα
u (x, t)

)}
(p)
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= pLα

{
∂rα

∂trα
u (x, t)

}
(p) −

∂rα

∂trα
u (x, 0)

= p

[
pr Lα {u (x, t)} (p) −

r−1∑
m=0

pr−m−1 ∂
mα

∂tmα
u (x, 0)

]
−
∂rα

∂trα
u (x, 0)

= pr+1 Lα {u (x, t)} (p) −
r−1∑
m=0

pr−m
∂mα

∂tmα
u (x, 0) −

∂rα

∂trα
u (x, 0)

= pr+1 Lα {u (x, t)} (p) −
r∑

m=0

pr−m
∂mα

∂tmα
u (x, 0) .

Therefore the theorem is true for every positive integral value of k.
In the following Lemma, we present the relation between the Katugampola Laplace transform and usual
Laplace transform.

Lemma 2.5 Let f : (0,∞)→ R be a function such that α ∈ (n, n+ 1] and Lα {f(t), p} = f̃(p). Then

Lα{f(t), p} = L{f( ((α−n) t)
1

α−n )}(p) (2.5)

where,

L{f(x)}(p) = `{f(x)}(p) =

∫∞
0
f(x) e−px dx

denotes the usual Laplace transform.

Proof. By setting y = tα−n

α−n , t = ((α−n)y)
1

α−n and dy = tα−n−1dx in the formula

Lα{f(t)}(p) =

∫∞
0

f(t) e−p
tα−n

α−n tα−n−1dt,

then, we have

Lα{f(t)}(p) =

∫∞
0
e−pyf(((α−n)y)

1
α−n

) dy

=

∫∞
0
e−ptf(((α−n) t)

1
α−n

) dt = `

{
f((α−n) t

1
α−n

)

}
(p).

Let us now present the Katugampola Laplace transform for some selected functions.

Theorem 2.6 Let α ∈ (n,n+ 1], n ∈ N. We have the following transformations

i) Lα

{
e±

tα−n

α−n k
2
}
(p) = `

{
e±tk

2
}
(p) =

1
p∓ k2 .

ii) Lα

{
sin
(
k
tα−n

α−n

)}
(p) = ` {sin (kt)} (p) =

k

p2 + k2 .

iii) Lα

{
cos
(
k
tα−n

α−n

)}
(p) = ` {cos (kt)} (p) =

p

p2 + k2 .

iv) Lα

{
J0

(
tα−n

α−n

)}
(p) = ` {J0 (t)} (p) =

1√
p2 + 1

,

where Bessel function [2] of order n denoted by Jn (t) is defined by
Jn (t) =

∑∞
r=0

(−1)r

r!.Γ(n+r+1)

(
t
2

)n+2r , J0
(
b t

α−n

α−n

)
is Bessel’s function of order zero,
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the Laplace transform of J0 (t) [10, pp.33 − 34] is 1√
1+p2

, and the Laplace transform of J1 (t) [10, p.35]

is 1 − p√
1+p2

.

v) Lα

{
J1

(
tα−n

α−n

)}
(p) = ` {J1 (t)} (p) = 1 −

p√
p2 + 1

,

where J1
(
tα−n

α−n

)
is Bessel’s function of order one.

vi) Lα

{
erf

(√
tα−n

α−n

)}
(p) = `

{
erf
(√
t
)}

(p) =
1

p
√
p+ 1

,

where erf
(√
t
)
= 2√

π

∫√t
0 e−u

2
du is an Error function.

vii) Lα

{
Si

(
tα−n

α−n

)}
(p) = ` {Si (t)} (p) =

1
p
tan−1

(
1
p

)
,

where Si (t) =
∫t

0
sinu
u du, is a sine integral function.

viii) Lα

{
Ci

(
tα−n

α−n

)}
(p) = ` {Ci (t)} (p) =

1
2p

log
(
p2 + 1

)
,

where Ci (t) =
∫t

0
cosu
u du is a cosine integral function.

x) Lα

{
Ei

(
tα−n

α−n

)}
(p) = ` {Ei (t)} (p) =

1
p

log (p+ 1) ,

where Ei (t) is a Exponential integral function.

xi) Lα

{
Ln

(
tα−n

α−n

)}
(p) = ` {Ln (t)} (p) =

(p− 1)n

pn+1 ,

where Ln (t) = et

n!
dn

dtn

(
tnet

)
du is a Laguerre polynomial.

xii) Lα
{
δ
(
tα−n

α−n

)
,κ
}
= ` {δ(t),κ} = 1,

where δ(t) is a Delta function.
Proof. We give the proofs of some transformations, where the rest of the proofs follows by using Definition
2.1, the substitution y = tα−n

α−n , and then integration.

i) Lα

{
e±k

2 tα−n
α−n

}
(p) =

∫∞
0
e±k

2 tα−n
α−n e−p

tα−n

α−n tα−n−1dt

=
∫∞

0 e
(−p±k2) t

α−n

α−n tα−n−1dt

=
∫∞

0 e
(−p±k2)ydy

= `
{
e±k

2y
}
(p)

= 1
p∓k2 , where y = tα−n

α−n .

v) Lα

{
J1

(
tα−n

α−n

)}
(p) =

∫∞
0
J1

(
tα−n

α−n

)
e−p

tα−n

α−n tα−n−1dt

=

∫∞
0
J1 (y) e

−pydy = ` {J1 (y)} (p) = 1 −
p√
p2 + 1

.
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xii)Lα
{
δ
(
tα−n

α−n

)
,κ
}
=
∫∞

0 δ
(
tα−n

α−n

)
e−p

tα−n

α−n tα−n−1dt

=
∫∞

0 δ (y) e
−pydy

= ` {δ(y),κ} = 1,

where the Laplace transform of the delta function is given by

` {δ(t− a);p} =
∫+∞

0
δ(t− a) e−ptdt = e−ap

and when a = 0, we obtain the result ` {δ(t);p} =
∫+∞

0 δ(t) e−ptdt = 1.

Theorem 2.7 Let α ∈ (n, n+ 1] and Lα{f(t), p} = f̃(p), Lα{g(x), p} = g̃(p). Then

i) Lα {tm} (p) =
(α−n)

m
α−n

p1+ m
α−n

Γ

(
1 +

m

α−n

)
, p>0. (2.6)

where Γ(t) is the Gamma function.

ii) Lα {H (t− a)} (p) =
e
−
(
aα−n

α−n

)
p

p
. (2.7)

where H (t− a) is the Unit Step (or Heaviside’s unit) function.

Proof. We can prove i) by setting tm =
[(
α−n
p

)
u
] m
α−n

.

In particular,

A) if m = 0 then, Lα {1} (p) = 1
pΓ (1) =

1
p ,

B) if m = 1 then, Lα {t} (p) =
(α−n)

1
α−n

p1+ 1
α−n

Γ
(
1 + 1

α−n

)
.

But for the result ii) , we can prove it by setting u = tα−n

α−n .

We next turn to obtain some important properties of the Katugampola Laplace transform.
Lemma 2.8 Katugampola Laplace transform Lα{f(x),κ} is liner. That is

Lα {a f+ bg} = aLα{f}+ bLα{g}. (2.8)

The proof is trivial.

Theorem 2.9 (The Shifting Property)
By introducing the Katugampola Laplace transform

Lα

{
e−a

tα−n

α−n f(t)
}
(p) = f̃(p+ a) = L

{
e−a.tf

(
((α−n) t)

1
α−n

)}
(p), (2.9)

where f̃(p) = Lα {f(t)} (p), the following results are readily follow:

(i) Lα

{
e−a

tα−n

α−n tm
}
(p) =

(α−n)
m
α−n

(p+ a)
m
α−n+1 Γ

(
1 +

m

α−n

)
.

(ii) Lα

{
e−a

tα−n

α−n e−b
tα−n

α−n

}
(p) =

1
(p+ a) − b

.
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(iii) Lα

{
e−a

tα−n

α−n sin
(
b
tα−n

α−n

)}
(p) = L

{
e−at sin (t)

}
(p) =

b

(p+ a)2 + b2
.

(iv) Lα

{
e−a

tα−n

α−n cos
(
b
tα−n

α−n

)}
(p) = L

{
e−at cos (t)

}
(p) =

p+ a

(p+ a)2 + b2
.

Theorem 2.10 (Change of Scale Property)

If Lα {f(t)} (p) = f̃ (p) then,

Lα {f(at)} (p) =
1

aα−n
f̃
( p

aα−n

)
. (2.10)

Proof. Starting with

Lα {f (at)} (p) =

∫∞
0
e−p

tα−n

α−n f (a t) tα−n−1dt,

putting u = at, so that t = u
a and du = adt (as t : 0→∞ ⇒ u : 0→∞),

we have
Lα {f (u)} (p) =

∫∞
0
e−p

1
α−n(

u
a )
α−n

f (u)
(u
a

)α−n−1 1
a
du

=
1

aα−n

∫∞
0
e−(

p

aα−n )
uα−n
α−n f (u) uα−n−1 du =

1
aα−n

f̃
( p

aα−n

)
.

Theorem 2.11 Let Lα {f(t)} (p) = f̃ (p) then,

Lα

{(
tα−n

α−n

)m
f(t)

}
(p) = (−1)m

dm

dpm
f̃ (p) , (2.11)

where m = 1, 2, 3, ... .
Proof. We can prove this Theorem by mathematical induction on m .

Theorem 2.12 (Convolution Theorem) Let g(t) and h (t) be arbitrary functions. Then,

Lα {g ∗ h} = Lα {g (t)}Lα {h (t)} = Lα {g}Lα {h} , (2.12)

where g ∗ h is the Convolutions of function g(t) and h (t) defined as

g ∗ h =

∫t
0
g (x)h(t− x)dx. (2.13)

Proof. It is easy to prove the results by using Lemma 2.5, and the definition of Laplace transform.

Remark 2.13 Let g(x) and h (x) be arbitrary functions, and let Lα−1 {g̃(p)} = g (x) and Lα−1
{
h̃(p)
}

=

h (x). Then,
(g ∗ h) (t) = Lα−1 {Lα {(g ∗ h) (t)}} = Lα−1 {Lα {g (t)}Lα {h (t)}} .

3. Conclusions
In this paper, we obtained several results that have close resemblance to the results found in classical
calculus. We defined a new kind of fractional Laplace transform. Also we gave some prosperities of this
transform which is considered as a generalization to the usual Laplace transform.
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